Zuletzt publiziert

  • Zeitschriftenartikel

    Screening of Barley Resistance Against Powdery Mildew by Simultaneous High-Throughput Enzyme Activity Signature Profiling and Multispectral Imaging 

    Kuska, Matheus T.; Behmann, Jan; Großkinsky, Dominik K.; Roitsch, Thomas; Mahlein, Anne-Katrin
    Frontiers in Plant Science 2018; 9 p.1074-1074
    Molecular marker analysis allow for a rapid and advanced pre-selection and resistance screenings in plant breeding processes. During the phenotyping process, optical sensors have proved their potential to determine and assess the function of the genotype of the breeding material. Thereby, biomarkers for specific disease resistance traits provide valuable information for calibrating optical sensor approaches during early plant-pathogen interactions. In this context, the combination of physiological, metabolic phenotyping and phenomic profiles could establish efficient identification and quantification of relevant genotypes within breeding processes. Experiments were conducted with near-isogenic lines of H. vulgare (susceptible, mildew locus o (mlo) and Mildew locus a (Mla) resistant). Multispectral imaging of barley plants was daily conducted 0-8 days after inoculation (dai) in a high-throughput facility with 10 wavelength bands from 400 to 1,000 nm. In parallel, the temporal dynamics of the activities of invertase isoenzymes, as key sink specific enzymes that irreversibly cleave the transport sugar sucrose into the hexose monomers, were profiled in a semi high-throughput approach. The activities of cell wall, cytosolic and vacuole invertase revealed specific dynamics of the activity signatures for susceptible genotypes and genotypes with mlo and Mla based resistances 0-120 hours after inoculation (hai). These patterns could be used to differentiate between interaction types and revealed an early influence of Blumeria graminis f.sp. hordei (Bgh) conidia on the specific invertase activity already 0.5 hai. During this early powdery mildew pathogenesis, the reflectance intensity increased in the blue bands and at 690 nm. The Mla resistant plants showed an increased reflectance at 680 and 710 nm and a decreased reflectance in the near infrared bands from 3 dai. Applying a Support Vector Machine classification as a supervised machine learning approach, the pixelwise identification and quantification of powdery mildew diseased barley tissue and hypersensitive response spots were established. This enables an automatic identification of the barley-powdery mildew interaction. The study established a proof-of-concept for plant resistance phenotyping with multispectral imaging in high-throughput. The combination of invertase analysis and multispectral imaging showed to be a complementing validation system. This will provide a deeper understanding of optical data and its implementation into disease resistance screening.
    Dokument ansehen Zusammenfassung
  • Zeitschriftenartikel

    Crop Rotational Effects on Yield Formation in Current Sugar Beet Production - Results From a Farm Survey and Field Trials 

    Koch, Heinz-Josef; Trimpler, Kerrin; Jacobs, Anna; Stockfisch, Nicol
    Frontiers in plant science 2018; 9: Art. 231
    In Europe, the framework for sugar beet (Beta vulgaris L.) production was subject to considerable changes and for the future it is expected that sugar beet cultivation might concentrate around the sugar factories for economic reasons. Based on data from a national sugar beet farmers' survey and multi-year crop rotation trials, the effects of cropping interval (number of years in between two subsequent sugar beet crops) and of preceding crops on sugar yield were elucidated under current Central European management conditions. The dominating sugar beet cropping interval was ≥4 years in the farm survey with pronounced differences between regions. However, the cropping intervals 2, 3, and ≥4 years did not affect the sugar yield. Therefore, significant differences in sugar yield between regions were assumed to be caused by multiple interactions between year, site, and farmers' skills. Throughout Germany, the dominating preceding crops in sugar beet cultivation were winter wheat (Triticum aestivum L.) and winter barley (Hordeum vulgare L.). In the field trials, the sugar yield was 5% higher after pea (Pisum sativum L.) compared to maize (Zea mays L.) as preceding crop, while differences between the preceding crops pea and winter wheat, and wheat and maize were not significant. Repeated measurements of canopy development and leaf color during the growing season revealed a higher N-availability after pea as preceding crop. However, decreased growth after maize was not completely compensated for by high N-fertilizer doses. Overall, the causes for the differences in sugar yield between the preceding crops remained open. The results do not support concerns about substantial yield losses in sugar beet production due to a reduction in the cropping interval from 3 to 2 years. Nevertheless, short rotations with maize and sugar beet might increase the risk of Rhizoctonia solani crown and root rot infestation. Leguminous crops such as pea offer the potential for higher sugar beet yield with lower N-fertilizer doses.
    Dokument ansehen Zusammenfassung
  • Zeitschriftenartikel

    Yield Potential of Sugar Beet - Have We Hit the Ceiling? 

    Hoffmann, Christa M.; Kenter, Christine
    Frontiers in Plant Science 2018; 9: Art. 289
    The yield of sugar beet has continuously increased in the past decades. The question arises, whether this progress will continue in the future. A key factor for increasing yield potential of the crop is breeding progress. It was related to a shift in assimilate partitioning in the plant toward more storage carbohydrates (sucrose), whereas structural carbohydrates (leaves, cell wall compounds) unintendedly declined. The yield potential of sugar beet was estimated at 24 t sugar ha-1. For maximum yield, sufficient growth factors have to be available and the crop has to be able to fully utilize them. In sugar beet, limitations result from the lacking coincidence of maximum irradiation rates and full canopy cover, sink strength for carbon assimilation and high water demand, which cannot be met by rainfall alone. After harvest, sugar losses during storage occur. The paper discusses options for a further increase in yield potential, like autumn sowing of sugar beet, increasing sink strength and related constraints. It is prospected that yield increase by further widening the ratio of storage and structural carbohydrates will come to its natural limit as a certain cell wall stability is necessary. New challenges caused by climate change and by prolonged processing campaigns will occur. Thus breeding for improved pathogen resistance and storage properties will be even more important for successful sugar beet production than a further increase in yield potential itself.
    Dokument ansehen Zusammenfassung
  • Zeitschriftenartikel

    Massive up-regulation of LBD transcription factors and EXPANSINs highlights the regulatory programs of rhizomania disease 

    Fernando Gil, Jose; Liebe, Sebastian; Thiel, Heike; Lennefors, Britt-Louise; Kraft, Thomas; Gilmer, David; Maiss, Edgar; Varrelmann, Mark; Savenkov, Eugene I.
    Molecular Plant Pathology 2018; 19(10) p.2333-2348
    Rhizomania of sugar beet, caused by Beet necrotic yellow vein virus (BNYVV), is characterized by excessive lateral root (LR) formation leading to dramatic reduction of taproot weight and massive yield losses. LR formation represents a developmental process tightly controlled by auxin signaling through AUX/IAA-ARF responsive module and LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcriptional network. Several LBD transcription factors play central roles in auxin-regulated LR development and act upstream of EXPANSINS (EXPs), cell wall (CW)-loosening proteins involved in plant development via disruption of the extracellular matrix for CW relaxation and expansion. Here, we present evidence that BNYVV hijacks these auxin-regulated pathways resulting in formation LR and root hairs (RH). We identified an AUX/IAA protein (BvAUX28) as interacting with P25, a viral virulence factor. Mutational analysis indicated that P25 interacts with domains I and II of BvAUX28. Subcellular localization of co-expressed P25 and BvAUX28 showed that P25 inhibits BvAUX28 nuclear localization. Moreover, root-specific LBDs and EXPs were greatly upregulated during rhizomania development. Based on these data, we present a model in which BNYVV P25 protein mimics action of auxin by removing BvAUX28 transcriptional repressor, leading to activation of LBDs and EXPs. Thus, the evidence highlights two pathways operating in parallel and leading to uncontrolled formation of LRs and RHs, the main manifestation of the rhizomania syndrome.
    Dokument ansehen Zusammenfassung
  • Zeitschriftenartikel

    Discovering coherency of specific gene expression and optical reflectance properties of barley genotypes differing for resistance reactions against powdery mildew 

    Kuska, Matheus Thomas; Behmann, Jan; Namini, Mahsa; Oerke, Erich-Christian; Steiner, Ulrike; Mahlein, Anne-Katrin
    PlOS ONE 2019; 14(3): Art. e0213291
    Hyperspectral imaging has proved its potential for evaluating complex plant-pathogen interactions. However, a closer link of the spectral signatures and genotypic characteristics remains elusive. Here, we show relation between gene expression profiles and specific wavebands from reflectance during three barley-powdery mildew interactions. Significant synergistic effects between the hyperspectral signal and the corresponding gene activities has been shown using the linear discriminant analysis (LDA). Combining the data sets of hyperspectral signatures and gene expression profiles allowed a more precise differentiation of the three investigated barley-Bgh interactions independent from the time after inoculation. This shows significant synergistic effects between the hyperspectral signal and the corresponding gene activities. To analyze this coherency between spectral reflectance and seven different gene expression profiles, relevant wavelength bands and reflectance intensities for each gene were computed using the Relief algorithm. Instancing, xylanase activity was indicated by relevant wavelengths around 710 nm, which are characterized by leaf and cell structures. HvRuBisCO activity underlines relevant wavebands in the green and red range, elucidating the coherency of RuBisCO to the photosynthesis apparatus and in the NIR range due to the influence of RuBisCO on barley leaf cell development. These findings provide the first insights to links between gene expression and spectral reflectance that can be used for an efficient non-invasive phenotyping of plant resistance and enables new insights into plant-pathogen interactions.
    Dokument ansehen Zusammenfassung
  • Zeitschriftenartikel

    Specim IQ: Evaluation of a New, Miniaturized Handheld Hyperspectral Camera and Its Application for Plant Phenotyping and Disease Detection 

    Behmann, Jan; Acebron, Kelvin; Emin, Dzhaner; Bennertz, Simon; Matsubara, Shizue; Thomas, Stefan; Bohnenkamp, David; Kuska, Matheus T.; Jussila, Jouni; Salo, Harri; et al.
    Mahlein, Anne-KatrinRascher, Uwe
    Sensors (Basel, Switzerland) 2018; 18(2): Art. 441
    Hyperspectral imaging sensors are promising tools for monitoring crop plants or vegetation in different environments. Information on physiology, architecture or biochemistry of plants can be assessed non-invasively and on different scales. For instance, hyperspectral sensors are implemented for stress detection in plant phenotyping processes or in precision agriculture. Up to date, a variety of non-imaging and imaging hyperspectral sensors is available. The measuring process and the handling of most of these sensors is rather complex. Thus, during the last years the demand for sensors with easy user operability arose. The present study introduces the novel hyperspectral camera Specim IQ from Specim (Oulu, Finland). The Specim IQ is a handheld push broom system with integrated operating system and controls. Basic data handling and data analysis processes, such as pre-processing and classification routines are implemented within the camera software. This study provides an introduction into the measurement pipeline of the Specim IQ as well as a radiometric performance comparison with a well-established hyperspectral imager. Case studies for the detection of powdery mildew on barley at the canopy scale and the spectral characterization of Arabidopsis thaliana mutants grown under stressed and non-stressed conditions are presented.
    Dokument ansehen Zusammenfassung
  • Zeitschriftenartikel

    Silage Maize and Sugar Beet for Biogas Production in Rotations and Continuous Cultivation: Dry Matter and Estimated Methane Yield 

    Brauer-Siebrecht, Wiebke; Jacobs, Anna; Christen, Olaf; Götze, Philipp; Koch, Heinz-Josef; Rücknagel, Jan; Märländer, Bernward
    Agronomy 2016; 6(1): Art. 2
    Since silage maize is the main crop grown for biogas production (biomass crop) in Germany; its increasing cultivation is critically discussed in terms of social and agronomical aspects. To investigate if sugar beet is suitable as an alternative biomass crop to silage maize; three-year field trials with both biomass crops in rotations with winter wheat (food crop) and continuous cultivation were conducted at three highly productive sites. Dry matter (DM) yield per hectare was measured via field trials whereas methane yield per hectare was estimated via a calculation. Higher annual DM yield was achieved by silage maize (19.5–27.4 t∙ha−1∙a−1) compared to sugar beet root (10.7–23.0 t∙ha−1∙a−1). Dry matter yield was found to be the main driver for the estimated methane yield. Thus; higher estimated methane yield was produced by silage maize (6458–9388 Nm3∙ha−1) with overlaps to sugar beet root (3729–7964 Nm3∙ha−1). We; therefore; classify sugar beet as a suitable alternative biomass crop to silage maize; especially when cultivated in crop rotations with winter wheat. Additionally; we found that the evaluation of entire crop rotations compared to single crops is a more precise approach since it includes rotational effects.
    Dokument ansehen Zusammenfassung