Recent Submissions

  • Journal Article

    Spreading of α-Synuclein and Tau: A Systematic Comparison of the Mechanisms Involved 

    Vasili, Eftychia; Dominguez-Meijide, Antonio; Outeiro, Tiago Fleming
    Frontiers in Molecular Neuroscience 2019; 12: Art. 107
    Alzheimer's disease (AD) and Parkinson's disease (PD) are age-associated neurodegenerative disorders characterized by the misfolding and aggregation of alpha-synuclein (aSyn) and tau, respectively. The coexistence of aSyn and tau aggregates suggests a strong overlap between tauopathies and synucleinopathies. Interestingly, misfolded forms of aSyn and tau can propagate from cell to cell, and throughout the brain, thereby templating the misfolding of native forms of the proteins. The exact mechanisms involved in the propagation of the two proteins show similarities, and are reminiscent of the spreading characteristic of prion diseases. Recently, several models were developed to study the spreading of aSyn and tau. Here, we discuss the mechanisms involved, the similarities and differences between the spreading of the two proteins and that of the prion protein, and the different cell and animal models used for studying these processes. Ultimately, a deeper understanding of the molecular mechanisms involved may lead to the identification of novel targets for therapeutic intervention in a variety of devastating neurodegenerative diseases.
    View Document Abstract
  • Journal Article

    Neuronal Redox-Imbalance in Rett Syndrome Affects Mitochondria as Well as Cytosol, and Is Accompanied by Intensified Mitochondrial O2 Consumption and ROS Release 

    Can, Karolina; Menzfeld, Christiane; Rinne, Lena; Rehling, Peter; Kügler, Sebastian; Golubiani, Gocha; Dudek, Jan; Müller, Michael
    Frontiers in Physiology 2019; 10: Art. 479
    Rett syndrome (RTT), an X chromosome-linked neurodevelopmental disorder affecting almost exclusively females, is associated with various mitochondrial alterations. Mitochondria are swollen, show altered respiratory rates, and their inner membrane is leaking protons. To advance the understanding of these disturbances and clarify their link to redox impairment and oxidative stress, we assessed mitochondrial respiration in defined brain regions and cardiac tissue of male wildtype (WT) and MeCP2-deficient (Mecp2-/y) mice. Also, we quantified for the first time neuronal redox-balance with subcellular resolution in cytosol and mitochondrial matrix. Quantitative roGFP1 redox imaging revealed more oxidized conditions in the cytosol of Mecp2-/y hippocampal neurons than in WT neurons. Furthermore, cytosol and mitochondria of Mecp2-/y neurons showed exaggerated redox-responses to hypoxia and cell-endogenous reactive oxygen species (ROS) formation. Biochemical analyzes exclude disease-related increases in mitochondrial mass in Mecp2-/y hippocampus and cortex. Protein levels of complex I core constituents were slightly lower in Mecp2-/y hippocampus and cortex than in WT; those of complex V were lower in Mecp2-/y cortex. Respiratory supercomplex-formation did not differ among genotypes. Yet, supplied with the complex II substrate succinate, mitochondria of Mecp2-/y cortex and hippocampus consumed more O2 than WT. Furthermore, mitochondria from Mecp2-/y hippocampus and cortex mediated an enhanced oxidative burden. In conclusion, we further advanced the molecular understanding of mitochondrial dysfunction in RTT. Intensified mitochondrial O2 consumption, increased mitochondrial ROS generation and disturbed redox balance in mitochondria and cytosol may represent a causal chain, which provokes dysregulated proteins, oxidative tissue damage, and contributes to neuronal network dysfunction in RTT.
    View Document Abstract
  • Journal Article

    Acute Complexin Knockout Abates Spontaneous and Evoked Transmitter Release 

    López-Murcia, Francisco José; Reim, Kerstin; Jahn, Olaf; Taschenberger, Holger; Brose, Nils
    Cell Reports 2019; 26(10): Art. 2530.e5
    SNARE-mediated synaptic vesicle (SV) fusion is controlled by multiple regulatory proteins that determine neurotransmitter release efficiency. Complexins are essential SNARE regulators whose mode of action is unclear, as available evidence indicates positive SV fusion facilitation and negative "fusion clamp"-like activities, with the latter occurring only in certain contexts. Because these contradictory findings likely originate in part from different experimental perturbation strategies, we attempted to resolve them by examining a conditional complexin-knockout mouse line as the most stringent genetic perturbation model available. We found that acute complexin loss after synaptogenesis in autaptic and mass-cultured hippocampal neurons reduces SV fusion probability and thus abates the rates of spontaneous, synchronous, asynchronous, and delayed transmitter release but does not affect SV priming or cause "unclamping" of spontaneous SV fusion. Thus, complexins act as facilitators of SV fusion but are dispensable for "fusion clamping" in mammalian forebrain neurons.
    View Document Abstract
  • Journal Article

    Anillin facilitates septin assembly to prevent pathological outfoldings of central nervous system myelin 

    Erwig, Michelle S.; Patzig, Julia; Steyer, Anna M.; Dibaj, Payam; Heilmann, Mareike; Heilmann, Ingo; Jung, Ramona B.; Kusch, Kathrin; Möbius, Wiebke; Jahn, Olaf; et al.
    eLife 2019; 8: Art. e43888
    Myelin serves as an axonal insulator that facilitates rapid nerve conduction along axons. By transmission electron microscopy, a healthy myelin sheath comprises compacted membrane layers spiraling around the cross-sectioned axon. Previously we identified the assembly of septin filaments in the innermost non-compacted myelin layer as one of the latest steps of myelin maturation in the central nervous system (CNS) (Patzig et al., 2016). Here we show that loss of the cytoskeletal adaptor protein anillin (ANLN) from oligodendrocytes disrupts myelin septin assembly, thereby causing the emergence of pathological myelin outfoldings. Since myelin outfoldings are a poorly understood hallmark of myelin disease and brain aging we assessed axon/myelin-units in Anln-mutant mice by focused ion beam-scanning electron microscopy (FIB-SEM); myelin outfoldings were three-dimensionally reconstructed as large sheets of multiple compact membrane layers. We suggest that anillin-dependent assembly of septin filaments scaffolds mature myelin sheaths, facilitating rapid nerve conduction in the healthy CNS.
    View Document Abstract
  • Journal Article

    X10 expansion microscopy enables 25-nm resolution on conventional microscopes 

    Truckenbrodt, Sven; Maidorn, Manuel; Crzan, Dagmar; Wildhagen, Hanna; Kabatas, Selda; Rizzoli, Silvio O.
    EMBO Reports 2018; 19(9): Art. e45836
    Expansion microscopy is a recently introduced imaging technique that achieves super-resolution through physically expanding the specimen by ~4×, after embedding into a swellable gel. The resolution attained is, correspondingly, approximately fourfold better than the diffraction limit, or ~70 nm. This is a major improvement over conventional microscopy, but still lags behind modern STED or STORM setups, whose resolution can reach 20-30 nm. We addressed this issue here by introducing an improved gel recipe that enables an expansion factor of ~10× in each dimension, which corresponds to an expansion of the sample volume by more than 1,000-fold. Our protocol, which we termed X10 microscopy, achieves a resolution of 25-30 nm on conventional epifluorescence microscopes. X10 provides multi-color images similar or even superior to those produced with more challenging methods, such as STED, STORM, and iterative expansion microscopy (iExM). X10 is therefore the cheapest and easiest option for high-quality super-resolution imaging currently available. X10 should be usable in any laboratory, irrespective of the machinery owned or of the technical knowledge.
    View Document Abstract
  • Journal Article

    Combined Use of Unnatural Amino Acids Enables Dual Color Super-Resolution Imaging of Proteins via Click Chemistry 

    Saal, Kim-A.; Richter, Frank; Rehling, Peter; Rizzoli, Silvio O.
    ACS Nano 2018; 2018(12) p.12247-12254
    Recent advances in optical nanoscopy have brought the imaging resolution to the size of the individual macromolecules, thereby setting stringent requirements for the fluorescent labels. Such requirements are optimally fulfilled by the incorporation of unnatural amino acids (UAAs) in the proteins of interest (POI), followed by fluorophore conjugation via click chemistry. However, this approach has been limited to single POIs in mammalian cells. Here we solve this problem by incorporating different UAAs in different POIs, which are expressed in independent cell sets. The cells are then fused, thereby combining the different proteins and organelles, and are easily imaged by dual-color super-resolution microscopy. This procedure, which we termed Fuse2Click, is simple, requires only the well-established Amber codon, and allows the use of all previously optimized UAAs and tRNA/RS pairs. This should render it a tool of choice for multi-color click-based imaging.
    View Document Abstract
  • Journal Article

    Investigating the feasibility of channelrhodopsin variants for nanoscale optogenetics 

    Stahlberg, Markus A.; Ramakrishnan, Charu; Willig, Katrin I.; Boyden, Edward S.; Deisseroth, Karl; Dean, Camin
    Neurophotonics 2019; 6(1): Art. 015007
    Optogenetics has revolutionized the study of circuit function in the brain, by allowing activation of specific ensembles of neurons by light. However, this technique has not yet been exploited extensively at the subcellular level. Here, we test the feasibility of a focal stimulation approach using stimulated emission depletion/reversible saturable optical fluorescence transitions-like illumination, whereby switchable light-gated channels are focally activated by a laser beam of one wavelength and deactivated by an overlapping donut-shaped beam of a different wavelength, confining activation to a center focal region. This method requires that activated channelrhodopsins are inactivated by overlapping illumination of a distinct wavelength and that photocurrents are large enough to be detected at the nanoscale. In tests of current optogenetic tools, we found that ChR2 C128A/H134R/T159C and CoChR C108S and C108S/D136A-activated with 405-nm light and inactivated by coillumination with 594-nm light-and C1V1 E122T/C167S-activated by 561-nm light and inactivated by 405-nm light-were most promising in terms of highest photocurrents and efficient inactivation with coillumination. Although further engineering of step-function channelrhodopsin variants with higher photoconductances will be required to employ this approach at the nanoscale, our findings provide a framework to guide future development of this technique.
    View Document Abstract
  • Journal Article

    Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions. 

    Fornasiero, Eugenio F.; Mandad, Sunit; Wildhagen, Hanna; Alevra, Mihai; Rammner, Burkhard; Keihani, Sarva; Opazo, Felipe; Urban, Inga; Ischebeck, Till; Sakib, M. Sadman; et al.
    Fard, Maryam K.Kirli, KorayCenteno, Tonatiuh PenaVidal, Ramon O.Rahman, Raza-UrBenito, EvaFischer, AndréDennerlein, SvenRehling, PeterFeussner, IvoBonn, StefanSimons, MikaelUrlaub, HenningRizzoli, Silvio O.
    Nature Communications 2018; 9(1): Art. 4230
    The turnover of brain proteins is critical for organism survival, and its perturbations are linked to pathology. Nevertheless, protein lifetimes have been difficult to obtain in vivo. They are readily measured in vitro by feeding cells with isotopically labeled amino acids, followed by mass spectrometry analyses. In vivo proteins are generated from at least two sources: labeled amino acids from the diet, and non-labeled amino acids from the degradation of pre-existing proteins. This renders measurements difficult. Here we solved this problem rigorously with a workflow that combines mouse in vivo isotopic labeling, mass spectrometry, and mathematical modeling. We also established several independent approaches to test and validate the results. This enabled us to measure the accurate lifetimes of ~3500 brain proteins. The high precision of our data provided a large set of biologically significant observations, including pathway-, organelle-, organ-, or cell-specific effects, along with a comprehensive catalog of extremely long-lived proteins (ELLPs).
    View Document Abstract
  • Journal Article

    WDR1 is a novel EYA3 substrate and its dephosphorylation induces modifications of the cellular actin cytoskeleton 

    Mentel, Mihaela; Ionescu, Aura E; Puscalau-Girtu, Ioana; Helm, Martin S; Badea, Rodica A; Rizzoli, Silvio O; Szedlacsek, Stefan E
    Scientific Reports 2018; 8(1) p.2910-2910: Art.
    Eyes absent (EYA) proteins are unusual proteins combining in a single polypeptide chain transactivation, threonine phosphatase, and tyrosine phosphatase activities. They play pivotal roles in organogenesis and are involved in a variety of physiological and pathological processes including innate immunity, DNA damage repair or cancer metastasis. The molecular targets of EYA tyrosine phosphatase activity are still elusive. Therefore, we sought to identify novel EYA substrates and also to obtain further insight into the tyrosine-dephosphorylating role of EYA proteins in various cellular processes. We show here that Src kinase phosphorylates tyrosine residues in two human EYA family members, EYA1 and EYA3. Both can autodephosphorylate these residues and their nuclear and cytoskeletal localization seems to be controlled by Src phosphorylation. Next, using a microarray of phosphotyrosine-containing peptides, we identified a phosphopeptide derived from WD-repeat-containing protein 1 (WDR1) that is dephosphorylated by EYA3. We further demonstrated that several tyrosine residues on WDR1 are phosphorylated by Src kinase, and are efficiently dephosphorylated by EYA3, but not by EYA1. The lack of phosphorylation generates major changes to the cellular actin cytoskeleton. We, therefore, conclude that WDR1 is an EYA3-specific substrate, which implies that EYA3 is a key modulator of the cytoskeletal reorganization.
    View Document Abstract
  • Journal Article

    OTTO: a new strategy to extract mental disease-relevant combinations of GWAS hits from individuals. 

    Ehrenreich, H.; Mitjans, M.; Van der Auwera, S.; Centeno, T. P.; Begemann, M.; Grabe, H. J.; Bonn, S.; Nave, K.-A.
    Molecular Psychiatry 2018; 23(2) p.476-486
    Despite high heritability of schizophrenia, genome-wide association studies (GWAS) have not yet revealed distinct combinations of single-nucleotide polymorphisms (SNPs), relevant for mental disease-related, quantifiable behavioral phenotypes. Here we propose an individual-based model to use genome-wide significant markers for extracting first genetic signatures of such behavioral continua. 'OTTO' (old Germanic=heritage) marks an individual characterized by a prominent phenotype and a particular load of phenotype-associated risk SNPs derived from GWAS that likely contributed to the development of his personal mental illness. This load of risk SNPs is shared by a small squad of 'similars' scattered under the genetically and phenotypically extremely heterogeneous umbrella of a schizophrenia end point diagnosis and to a variable degree also by healthy subjects. In a discovery sample of >1000 deeply phenotyped schizophrenia patients and several independent replication samples, including the general population, a gradual increase in the severity of 'OTTO's phenotype' expression is observed with an increasing share of 'OTTO's risk SNPs', as exemplified here by autistic and affective phenotypes. These data suggest a model in which the genetic contribution to dimensional behavioral traits can be extracted from combinations of GWAS SNPs derived from individuals with prominent phenotypes. Even though still in the 'model phase' owing to a world-wide lack of sufficiently powered, deeply phenotyped replication samples, the OTTO approach constitutes a conceptually novel strategy to delineate biological subcategories of mental diseases starting from GWAS findings and individual subjects.
    View Document Abstract
  • Journal Article

    Synaptic Alterations in Mouse Models for Alzheimer Disease—A Special Focus on N-Truncated Abeta 4-42 

    Dietrich, Katharina; Bouter, Yvonne; Müller, Michael; Bayer, Thomas
    Molecules 2018; 23(4) p.1-14: Art. 718
    This commentary reviews the role of the Alzheimer amyloid peptide Aβ on basal synaptic transmission, synaptic short-term plasticity, as well as short- and long-term potentiation in transgenic mice, with a special focus on N-terminal truncated Aβ4-42. Aβ4-42 is highly abundant in the brain of Alzheimer’s disease (AD) patients. It demonstrates increased neurotoxicity compared to full length Aβ, suggesting an important role in the pathogenesis of AD. Transgenic Tg4-42 mice, a model for sporadic AD, express human Aβ4-42 in Cornu Ammonis (CA1) neurons, and develop age-dependent hippocampal neuron loss and neurological deficits. In contrast to other transgenic AD mouse models, the Tg4-42 model exhibits synaptic hyperexcitability, altered synaptic short-term plasticity with no alterations in short- and long-term potentiation. The outcomes of this study are discussed in comparison with controversial results from other AD mouse models.
    View Document Abstract
  • Journal Article

    ATP-Dependent Chromatin Remodeling During Cortical Neurogenesis 

    Sokpor, Godwin; Castro-Hernandez, Ricardo; Rosenbusch, Joachim; Staiger, Jochen F.; Tuoc, Tran
    Frontiers in Neuroscience 2018; 12 p.1-25: Art. 226
    The generation of individual neurons (neurogenesis) during cortical development occurs in discrete steps that are subtly regulated and orchestrated to ensure normal histogenesis and function of the cortex. Notably, various gene expression programs are known to critically drive many facets of neurogenesis with a high level of specificity during brain development. Typically, precise regulation of gene expression patterns ensures that key events like proliferation and differentiation of neural progenitors, specification of neuronal subtypes, as well as migration and maturation of neurons in the developing cortex occur properly. ATP-dependent chromatin remodeling complexes regulate gene expression through utilization of energy fromATP hydrolysis to reorganize chromatin structure. These chromatin remodeling complexes are characteristically multimeric, with some capable of adopting functionally distinct conformations via subunit reconstitution to perform specific roles in major aspects of cortical neurogenesis. In this review, we highlight the functions of such chromatin remodelers during cortical development. We also bring together various proposed mechanisms by which ATP-dependent chromatin remodelers function individually or in concert, to specifically modulate vital steps in cortical neurogenesis.
    View Document Abstract
  • Journal Article

    Sumoylation Protects Against β-Synuclein Toxicity in Yeast. 

    Popova, Blagovesta; Kleinknecht, Alexandra; Arendarski, Patricia; Mischke, Jasmin; Wang, Dan; Braus, Gerhard H.
    Frontiers in molecular neuroscience 2018; 11 p.1-17: Art. 94
    Aggregation of α-synuclein (αSyn) plays a central role in the pathogenesis of Parkinson's disease (PD). The budding yeast Saccharomyces cerevisiae serves as reference cell to study the interplay between αSyn misfolding, cytotoxicity and post-translational modifications (PTMs). The synuclein family includes α, β and γ isoforms. β-synuclein (βSyn) and αSyn are found at presynaptic terminals and both proteins are presumably involved in disease pathogenesis. Similar to αSyn, expression of βSyn leads to growth deficiency and formation of intracellular aggregates in yeast. Co-expression of αSyn and βSyn exacerbates the cytotoxicity. This suggests an important role of βSyn homeostasis in PD pathology. We show here that the small ubiquitin-like modifier SUMO is an important determinant of protein stability and βSyn-induced toxicity in eukaryotic cells. Downregulation of sumoylation in a yeast strain, defective for the SUMO-encoding gene resulted in reduced yeast growth, whereas upregulation of sumoylation rescued growth of yeast cell expressing βSyn. This corroborates a protective role of the cellular sumoylation machinery against βSyn-induced toxicity. Upregulation of sumoylation significantly reduced βSyn aggregate formation. This is an indirect molecular process, which is not directly linked to βSyn sumoylation because amino acid substitutions in the lysine residues required for βSyn sumoylation decreased aggregation without changing yeast cellular toxicity. αSyn aggregates are more predominantly degraded by the autophagy/vacuole than by the 26S ubiquitin proteasome system. We demonstrate a vice versa situation for βSyn, which is mainly degraded in the 26S proteasome. Downregulation of sumoylation significantly compromised the clearance of βSyn by the 26S proteasome and increased protein stability. This effect is specific, because depletion of functional SUMO did neither affect βSyn aggregate formation nor its degradation by the autophagy/vacuolar pathway. Our data support that cellular βSyn toxicity and aggregation do not correlate in their cellular impact as for αSyn but rather represent two distinct independent molecular functions and molecular mechanisms. These insights into the relationship between βSyn-induced toxicity, aggregate formation and degradation demonstrate a significant distinction between the impact of αSyn compared to βSyn on eukaryotic cells.
    View Document Abstract
  • Journal Article

    Glyoxal as an alternative fixative to formaldehyde in immunostaining and super-resolution microscopy 

    Richter, Katharina N.; Revelo, Natalia H.; Seitz, Katharina J.; Helm, Martin S.; Sarkar, Deblina; Saleeb, Rebecca S.; D'Este, Elisa; Eberle, Jessica; Wagner, Eva; Vogl, Christian; et al.
    Lazaro, Diana F.Richter, FrankCoy-Vergara, JavierCoceano, GiovannaBoyden, Edward S.Duncan, Rory R.Hell, Stefan W.Lauterbach, Marcel A.Lehnart, Stephan E.Moser, TobiasOuteiro, Tiago F.Rehling, PeterSchwappach, BlancheTesta, IlariaZapiec, BolekRizzoli, Silvio O.
    The EMBO Journal 2018; 37(1) p.139-159
    Paraformaldehyde (PFA) is the most commonly used fixative for immunostaining of cells, but has been associated with various problems, ranging from loss of antigenicity to changes in morphology during fixation. We show here that the small dialdehyde glyoxal can successfully replace PFA Despite being less toxic than PFA, and, as most aldehydes, likely usable as a fixative, glyoxal has not yet been systematically tried in modern fluorescence microscopy. Here, we tested and optimized glyoxal fixation and surprisingly found it to be more efficient than PFA-based protocols. Glyoxal acted faster than PFA, cross-linked proteins more effectively, and improved the preservation of cellular morphology. We validated glyoxal fixation in multiple laboratories against different PFA-based protocols and confirmed that it enabled better immunostainings for a majority of the targets. Our data therefore support that glyoxal can be a valuable alternative to PFA for immunostaining.
    View Document Abstract
  • Journal Article

    Collapsin response mediator protein-2 plays a major protective role in acute axonal degeneration. 

    Zhang, Jian-Nan; Koch, Jan C
    Neural regeneration research 2017-05; 12(5) p.692-695
    Axonal degeneration is a key pathological feature in many neurological diseases. It often leads to persistent deficits due to the inability of axons to regenerate in the central nervous system. Therefore therapeutic approaches should optimally both attenuate axonal degeneration and foster axonal regeneration. Compelling evidence suggests that collapsin response mediator protein-2 (CRMP2) might be a molecular target fulfilling these requirements. In this mini-review, we give a compact overview of the known functions of CRMP2 and its molecular interactors in neurite outgrowth and in neurodegenerative conditions. Moreover, we discuss in detail our recent findings on the role of CRMP2 in acute axonal degeneration in the optic nerve. We found that the calcium influx induced by the lesion activates the protease calpain which cleaves CRMP2, leading to impairment of axonal transport. Both calpain inhibition and CRMP2 overexpression effectively protected the proximal axons against acute axonal degeneration. Taken together, CRMP2 is further characterized as a central molecular player in acute axonal degeneration and thus evolves as a promising therapeutic target to both counteract axonal degeneration and foster axonal regeneration in neurodegenerative and neurotraumatic diseases.
    View Document Abstract
  • Journal Article

    Three-dimensional mouse brain cytoarchitecture revealed by laboratory-based x-ray phase-contrast tomography. 

    Töpperwien, Mareike; Krenkel, Martin; Vincenz, Daniel; Stöber, Franziska; Oelschlegel, Anja M.; Goldschmidt, Jürgen; Salditt, Tim
    Scientific reports 2017-02-27; 7: Art. 42847
    Studies of brain cytoarchitecture in mammals are routinely performed by serial sectioning of the specimen and staining of the sections. The procedure is labor-intensive and the 3D architecture can only be determined after aligning individual 2D sections, leading to a reconstructed volume with non-isotropic resolution. Propagation-based x-ray phase-contrast tomography offers a unique potential for high-resolution 3D imaging of intact biological specimen due to the high penetration depth and potential resolution. We here show that even compact laboratory CT at an optimized liquid-metal jet microfocus source combined with suitable phase-retrieval algorithms and a novel tissue preparation can provide cellular and subcellular resolution in millimeter sized samples of mouse brain. We removed water and lipids from entire mouse brains and measured the remaining dry tissue matrix in air, lowering absorption but increasing phase contrast. We present single-cell resolution images of mouse brain cytoarchitecture and show that axons can be revealed in myelinated fiber bundles. In contrast to optical 3D techniques our approach does neither require staining of cells nor tissue clearing, procedures that are increasingly difficult to apply with increasing sample and brain sizes. The approach thus opens a novel route for high-resolution high-throughput studies of brain architecture in mammals.
    View Document Abstract
  • Journal Article

    RIM-Binding Protein 2 Promotes a Large Number of CaV1.3 Ca2+-Channels and Contributes to Fast Synaptic Vesicle Replenishment at Hair Cell Active Zones. 

    Krinner, Stefanie; Butola, Tanvi; Jung, SangYong; Wichmann, Carolin; Moser, Tobias
    Frontiers in cellular neuroscience 2017; 11: Art. 334
    Ribbon synapses of inner hair cells (IHCs) mediate high rates of synchronous exocytosis to indefatigably track the stimulating sound with sub-millisecond precision. The sophisticated molecular machinery of the inner hair cell active zone realizes this impressive performance by enabling a large number of synaptic voltage-gated CaV1.3 Ca2+-channels, their tight coupling to synaptic vesicles (SVs) and fast replenishment of fusion competent SVs. Here we studied the role of RIM-binding protein 2 (RIM-BP2)-a multidomain cytomatrix protein known to directly interact with Rab3 interacting molecules (RIMs), bassoon and CaV1.3-that is present at the inner hair cell active zones. We combined confocal and stimulated emission depletion (STED) immunofluorescence microscopy, electron tomography, patch-clamp and confocal Ca2+-imaging, as well as auditory systems physiology to explore the morphological and functional effects of genetic RIM-BP2 disruption in constitutive RIM-BP2 knockout mice. We found that RIM-BP2 (1) positively regulates the number of synaptic CaV1.3 channels and thereby facilitates synaptic vesicle release and (2) supports fast synaptic vesicle recruitment after readily releasable pool (RRP) depletion. However, Ca2+-influx-exocytosis coupling seemed unaltered for readily releasable SVs. Recordings of auditory brainstem responses (ABR) and of single auditory nerve fiber firing showed that RIM-BP2 disruption results in a mild deficit of synaptic sound encoding.
    View Document Abstract
  • Journal Article

    Posttranslational modifications of blood-derived alpha-synuclein as biochemical markers for Parkinson's disease. 

    Vicente Miranda, Hugo; Cássio, Rafaela; Correia-Guedes, Leonor; Gomes, Marcos António; Chegão, Ana; Miranda, Elisa; Soares, Tiago; Coelho, Miguel; Rosa, Mário Miguel; Ferreira, Joaquim J; et al.
    Outeiro, Tiago Fleming
    Scientific reports 2017-10-20; 7(1): Art. 13713
    Parkinson's disease (PD) is a progressive neurodegenerative disorder known for the typical motor features associated. Pathologically, it is characterized by the intracellular accumulation of alpha-synuclein (aSyn) in Lewy bodies and Lewy neurites. Currently, there are no established biochemical markers for diagnosing or for following disease progression, a major limitation for the clinical practice. Posttranslational modifications (PTMs) in aSyn have been identified and implicated on its pathobiology. Since aSyn is abundant in blood erythrocytes, we aimed to evaluate whether PTMs of aSyn in the blood might hold value as a biomarker for PD. We examined 58 patients with PD and 30 healthy age-matched individuals. We found that the levels of Y125 phosphorylated, Y39 nitrated, and glycated aSyn were increased in PD, while those of SUMO were reduced. A combinatory analysis of the levels of these PTMs resulted in an increased sensitivity, with an area under curve (AUC) of 0.843 for PD versus healthy controls, and correlated with disease severity and duration. We conclude that the levels of these selected PTMs hold strong potential as biochemical markers for PD. Ultimately, our findings might facilitate the monitoring of disease progression in clinical trials, opening the possibility for developing more effective therapies against PD.
    View Document Abstract
  • Journal Article

    The Insect Ortholog of the Human Orphan Cytokine Receptor CRLF3 Is a Neuroprotective Erythropoietin Receptor. 

    Hahn, Nina; Knorr, Debbra Y.; Liebig, Johannes; Wüstefeld, Liane; Peters, Karsten; Büscher, Marita; Bucher, Gregor; Ehrenreich, Hannelore; Heinrich, Ralf
    Frontiers in molecular neuroscience 2017; 10: Art. 223
    The cytokine erythropoietin (Epo) mediates various cell homeostatic responses to environmental challenges and pathological insults. While stimulation of vertebrate erythrocyte production is mediated by homodimeric "classical" Epo receptors, alternative receptors are involved in neuroprotection. However, their identity remains enigmatic due to complex cytokine ligand and receptor interactions and conflicting experimental results. Besides the classical Epo receptor, the family of type I cytokine receptors also includes the poorly characterized orphan cytokine receptor-like factor 3 (CRLF3) present in vertebrates including human and various insect species. By making use of the more simple genetic makeup of insect model systems, we studied whether CRLF3 is a neuroprotective Epo receptor in animals. We identified a single ortholog of CRLF3 in the beetle Tribolium castaneum, and established protocols for primary neuronal cell cultures from Tribolium brains and efficient in vitro RNA interference. Recombinant human Epo as well as the non-erythropoietic Epo splice variant EV-3 increased the survival of serum-deprived brain neurons, confirming the previously described neuroprotective effect of Epo in insects. Moreover, Epo completely prevented hypoxia-induced apoptotic cell death of primary neuronal cultures. Knockdown of CRLF3 expression by RNA interference with two different double stranded RNA (dsRNA) fragments abolished the neuroprotective effect of Epo, indicating that CRLF3 is a crucial component of the insect Epo-responsive receptor. This suggests that a common urbilaterian ancestor of the orphan human and insect cytokine receptor CRLF3 served as a neuroprotective receptor for an Epo-like cytokine. Our work also suggests that vertebrate CRLF3, like its insect ortholog, might represent a tissue protection-mediating receptor.
    View Document Abstract
  • Journal Article

    Imaging of neuronal tissues by x-ray diffraction and x-ray fluorescence microscopy: evaluation of contrast and biomarkers for neurodegenerative diseases. 

    Carboni, Eleonora; Nicolas, Jan-David; Töpperwien, Mareike; Stadelmann-Nessler, Christine; Lingor, Paul; Salditt, Tim
    Biomedical optics express 2017-10-01; 8(10) p.4331-4347
    We have used scanning X-ray diffraction (XRD) and X-ray fluorescence (XRF) with micro-focused synchrotron radiation to study histological sections from human substantia nigra (SN). Both XRF and XRD mappings visualize tissue properties, which are inaccessible by conventional microscopy and histology. We propose to use these advanced tools to characterize neuronal tissue in neurodegeneration, in particular in Parkinson's disease (PD). To this end, we take advantage of the recent experimental progress in x-ray focusing, detection, and use automated data analysis scripts to enable quantitative analysis of large field of views. XRD signals are recorded and analyzed both in the regime of small-angle (SAXS) and wide-angle x-ray scattering (WAXS). The SAXS signal was analyzed in view of the local myelin structure, while WAXS was used to identify crystalline deposits. PD tissue scans exhibited increased amounts of crystallized cholesterol. The XRF analysis showed increased amounts of iron and decreased amounts of copper in the PD tissue compared to the control.
    View Document Abstract

View more