Show simple item record

Locating a minisum circle in the plane

dc.contributor.authorBrimberg, Jack
dc.contributor.authorJuel, Henrik
dc.contributor.authorSchöbel, Anita
dc.date.accessioned2010-11-16T09:20:35Z
dc.date.available2010-11-16T09:20:35Z
dc.date.issued2009
dc.identifier.citationBrimberg, Jack; Juel, Henrik; Schöbel, Anita (2009): Locating a minisum circle in the plane - Discrete Applied Mathematics, Vol. 157, Nr. 5, p. 901-912
dc.identifier.urihttp://resolver.sub.uni-goettingen.de/purl?gs-1/5724
dc.description.abstractWe consider the problem of locating a circle with respect to existing facilities in the plane such that the sum of weighted distances between the circle and the facilities is minimized, i.e., we approximate a set of given points by a circle regarding the sum of weighted distances. If the radius of the circle is a variable we show that there always exists an optimal circle passing through two of the existing facilities. For the case of a fixed radius we provide characterizations of optimal circles in special cases. Solution procedures are suggested.
dc.language.isoeng
dc.rightsopenAccess
dc.subjectminisum circle
dc.subject.ddc510
dc.titleLocating a minisum circle in the plane
dc.typejournalArticle
dc.identifier.doi10.1016/j.dam.2008.03.017
dc.type.versionsubmittedVersion
dc.bibliographicCitation.volume157
dc.bibliographicCitation.issue5
dc.bibliographicCitation.firstPage901
dc.bibliographicCitation.lastPage912
dc.type.subtypejournalArticle
dc.description.statuspeerReviewed
dc.bibliographicCitation.journalDiscrete Applied Mathematics


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record