Show simple item record

Spontaneous termination of chaotic spiral wave dynamics in human cardiac ion channel models

dc.contributor.authorAron, Marcel
dc.contributor.authorHerzog, Sebastian
dc.contributor.authorParlitz, Ulrich
dc.contributor.authorLuther, Stefan
dc.contributor.authorLilienkamp, Thomas
dc.date.accessioned2019-11-05T09:22:16Z
dc.date.available2019-11-05T09:22:16Z
dc.date.issued2019de
dc.relation.ISSN1932-6203de
dc.identifier.urihttp://resolver.sub.uni-goettingen.de/purl?gs-1/16602
dc.description.abstractChaotic spiral or scroll wave dynamics can be found in diverse systems. In cardiac dynamics, spiral or scroll waves of electrical excitation determine the dynamics during life-threatening arrhythmias like ventricular fibrillation. In numerical studies it was found that chaotic episodes of spiral and scroll waves can be transient, thus they terminate spontaneously. We show in this study that this behavior can also be observed using models which describe the ion channel dynamics of human cardiomyocytes (Bueno-Orovio-Cherry-Fenton model and the Ten Tusscher-Noble-Noble-Panfilov model). For both models we find that the average lifetime of the chaotic transients grows exponentially with the system size. With this behavior, we classify the systems into the group of type-II supertransients. We observe a significant difference of the breakup behavior between the models, which results in a distinct dynamics during the final phase just before the termination. The observation of a (temporally) stable single-spiral state affects the prevailing description of the dynamics of type-II supertransients as being "quasi-stationary" and also the feasibility of predicting the spontaneous termination of the spiral wave dynamics. In the long term, the relation between the breakup behavior of spiral waves and properties of chaotic transients like predictability or average transient lifetime may contribute to an improved understanding and classification of cardiac arrhythmias.de
dc.language.isoengde
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMembrane potential; Arrhythmia; Behavior; Ion channels; Simulation and modeling; Markov models; Phase determination; Tachycardiade
dc.subject.ddc006
dc.subject.ddc573
dc.subject.ddc612
dc.titleSpontaneous termination of chaotic spiral wave dynamics in human cardiac ion channel modelsde
dc.typejournalArticlede
dc.identifier.doi10.1371/journal.pone.0221401
dc.identifier.doi10.1371/journal.pone.0221401.g001
dc.identifier.doi10.1371/journal.pone.0221401.g002
dc.identifier.doi10.1371/journal.pone.0221401.g003
dc.identifier.doi10.1371/journal.pone.0221401.g004
dc.identifier.doi10.1371/journal.pone.0221401.g005
dc.identifier.doi10.1371/journal.pone.0221401.g006
dc.identifier.doi10.1371/journal.pone.0221401.g007
dc.identifier.doi10.1371/journal.pone.0221401.g008
dc.identifier.doi10.1371/journal.pone.0221401.t001
dc.identifier.doi10.1371/journal.pone.0221401.s001
dc.identifier.doi10.1371/journal.pone.0221401.s002
dc.identifier.doi10.1371/journal.pone.0221401.s003
dc.identifier.doi10.1371/journal.pone.0221401.s004
dc.identifier.doi10.1371/journal.pone.0221401.s005
dc.identifier.doi10.1371/journal.pone.0221401.s006
dc.identifier.doi10.1371/journal.pone.0221401.s007
dc.type.versionpublishedVersionde
dc.relation.eISSN1932-6203
dc.bibliographicCitation.volume14de
dc.bibliographicCitation.issue8de
dc.type.subtypejournalArticle
dc.identifier.pmid31461472
dc.bibliographicCitation.articlenumbere0221401de
dc.description.statuspeerReviewedde
dc.bibliographicCitation.journalPLOS ONEde


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

These documents are avalilable under the license:
openAccess