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Abstract 

The use of metallic iron as environmental remediation medium was based on an incorrect 

interpretation of experimental observations. Since then, faced with seemingly contradictory 

data, researchers have substantially revised their models but controversial reports are still 

current, suggesting that a substantial revision is unavoidable. This communication analyses 

redox processes in Fe0/H2O systems and demonstrates that the current paradigm even 

contradicts textbook knowledge on aqueous iron corrosion that was available before the 

advent of the Fe0 technology. Accordingly, the use of metallic iron for environmental 

remediation should be regarded as a classical case where scientists are entrenched in a false 

paradigm. An immediate correction is recommended before a questionable ‘novelty’ is 

transferred into standard textbooks.  
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Controversy is a part of science but is rarely presented in science textbooks [1-3]. In fact, 

textbooks mostly present final results in form of established hypotheses and models [4]. This 

approach has been criticized as learners (e.g. undergraduates) do not access the true nature of 

science [1-4]. Science is universal knowledge that is conventionally gained in a non-linear 

‘step-by-step’ accumulation process. As a matter of fact, new findings may emerge from 

unexpected places, and lead to rapid progress in previously unexpected directions [4-6]. 

The use of metallic iron (Fe0) for environmental remediation should be regarded as a 

discovery from an ‘unexpected’ place [2,7]. In fact, according to textbook knowledge 

available before the introduction of this technology, Fe0 would never have been regarded as 

reducing agent in water at pH > 4.5 and containing micro-amounts of pollutants (micro-

pollutants) [8,9]. In other words, no working (electro)chemist would have had the idea to use 

iron as reducing agent under environmental conditions [10-15]. However, used as reducing 

agent, Fe0 has been proven efficient for environmental remediation, wastewater treatment and 

safe drinking water provision [16-28]. Apart from wastewater treatment, these are typical 

situations were species of interest are present in trace amounts (micro-pollutants) [29,30] 

Over the past two decades, an accumulation of data disapproving the virtually universally 

accepted idea that Fe0 is a reducing agent has been observed [6,15,31]. Although the still 

currently accepted paradigm was disproved five years ago [32,33], it has been largely ignored 

by working scientists and other practitioners of the Fe0 technology [34]. This situation 

suggests ethical issues may not be obligatory in science as giving the state-of-the-art 

knowledge on any relevant issue should remain a must for any scientific paper [35]. It should 

be acknowledged that the concept stipulating that Fe0 is the main reducing agent has never 

been univocally accepted. Three examples for illustration: (i) Lipczynska-Kochany et al. [10] 

questioned the long-term efficient of reductive reaction at circumneutral pH, (ii) 

Odziemkowski et al. [11] demonstrated the impossibility of quantitative reduction of n-
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nitrosodimethylamine by Fe0 under laboratory conditions, and (iii) Farrell et al. [12] 

demonstrated that under anoxic conditions Fe
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0 is quantitatively oxidized by water (H+). 

Disregarding any ethical issues, the present communication aims at demonstrating why 

Fe0/H2O systems are good remediation system although Fe0 is not a reducing agent. The 

discussion is based on an analysis of the Fe0/H2O system under anoxic conditions (Tab. 1) 

using textbook knowledge available before the introduction of the Fe0 remediation 

technology. The basic Fe0/H2O system is extended to the redox couple CuII/Cu0 and O2/OH- to 

expand the discussion to bimetallic systems and system operating under oxic conditions. 

Results corroborates that Fe0 is not likely to serve as a reducing agent. 

2 The natural anoxic Fe0/H2O system 

Natural Fe0/H2O systems are defined as Fe0 in natural waters (6.5 ≤ pH ≤ 9.5). That is water 

immersed Fe0 at pH values larger than 5.0. In this pH range, Fe0 corrosion is dominated by 

‘oxygen adsorption’ type meaning that the oxidative agents must come in contact with Fe0 or 

a conductive scale at its surface [36-42]. Table 1 summarizes some relevant equations for 

such a system. Basically, in the absence of oxidizing agents including oxygen (strictly anoxic 

conditions), there are three inherent redox couples (FeII/Fe0, HI/H0 and FeIII/FeII) to be 

considered (Eq. 1, 2, 3, 5). The likely reactions on a pure thermodynamic perspective are 

given in Eq. 7 to 10. 

Aqueous corrosion of Fe0 materials at pH > 4.5 is an electrochemical process involving the 

anodic dissolution of iron (Eq. 1) and the cathodic evolution of hydrogen (Eq. 3) [8]. The 

overall reaction is given by Eq. 7. Eq. 7 alone shows that hydrogen evolution is driven by Fe0 

oxidation through water. Accordingly, any attempt to rationalize contaminant reduction by 

Fe0 using hydrogen evolution is faulty. However, ideally, Eq. 7 is an equilibrium, meaning 

that, according to Le Chatellier’s principle, if Fe2+ is consumed in a chemical reaction (e.g. O2 

reduction – Eq. 13), increased H2 evolution will be observed. This is the fundamental link 

between ‘H2 evolution’ and ‘contaminant reduction’. Therefore, increased ‘H2 evolution’ in 
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the presence of any contaminant is an indicator for indirect reduction by FeII. The possibility 

that the contaminant of concern is rather reduced by H
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2 should not be excluded [11]. In this 

case, recorded H2 evolution is a fraction of total H2. 

Another important feature from Tab. 1 (Eq. 7 to 10) is the variety of FeII and H2 sources. In 

particular H2 may derive from three different sources: (i) Fe0 corrosion by water (Eq. 7), (ii) 

Fe0
(ads) oxidation by water (Eq. 8), and the Shikorr reaction (iii) (Eq. 10). The Shikorr reaction 

is known to occur at temperatures above 80 °C but could be catalyzed by the presence of Fe0 

[43]. On the other hand, beside oxidation of Fe0 by water (Eq. 7), FeII could result from Fe0 

oxidation by aqueous FeIII (Eq. 9). These additional sources of reducing agents have been 

largely overseen as contaminant reduction has been mostly attributed to Fe0 [28,44,45]. 

However, Data from Hydrometallurgy and Synthetic Organic Chemistry have not yet 

univocally proven the extent of direct reduction (electrons from Fe0) in chemical reduction 

involving Fe0, even at elevated temperatures [45-51]. For example, Gould [46] reported on a 

reaction stoichiometry of 1.33 mol of dissolved iron per mol of CrVI reduced. This high 

efficiency was attributed to generated H2 acting as a reducing agent for CrVI. As discussed 

here, beside H2, FeII
(ads) and FeII

(aq) are further sources of reducing agents for CrVI (E0 = 1.53 

V). Given the possibility that FeII is ‘recycled’ by generated FeIII (Eq. 9), discussing the actual 

reaction stoichiometry is a complex task which is over the scope of this communication. In 

the real world FeII-recycling by microbial activity render the system more complex. 

Accordingly, whether Fe0 contribute and to which extent to the process of contaminant 

reduction under anoxic conditions is still unclear. The situation is more complex under oxic 

conditions. 

3 The natural oxic Fe0/H2O system 

Table 1 shows that all possible reactions under anoxic conditions are possible under oxic 

conditions as well. In fact, O2 is a more powerful oxidizing agent than water (H+ or H2O). The 

kinetics of Fe0 oxidation by O2 is more rapid. According to Cohen [52] the reaction is 65 
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times more rapid than under anoxic conditions. However, oxidation with O2 is coupled with 

the formation of non conductive oxides (e.g. FeOOH, Fe
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2O3) that will impede any electron 

transfer from Fe0 (direct reduction). On the other hand, the rapid production of adsorptive 

species (e.g. Fe(OH)2, FeOOH, Fe2O3) is the rationale for increased contaminant removal 

under oxic conditions [53,54]. 

Under oxic conditions the surface of Fe0 is rapidly covered with a multi-layered oxide scale 

through which any species, including O2, must migrate to reach the Fe0 surface. It has been 

traceably demonstrated that, under ‘external’ oxic conditions, Fe0 is oxidized by water (Eq. 7) 

and dissolved O2 is reduced by FeII (Eq. 13) [41,42,55]. This suggests that, as long as the 

oxide scale is porous enough to enable FeII diffusive transport from the Fe0 surface to sites 

within the oxide scale where dissolved oxygen (and any other oxidizing species) can diffuse 

in the opposite direction, chemical reduction could occur. Whether this chemical reaction is 

quantitative or not depends on several factors including the intrinsic reactivity of used Fe0, the 

flux of oxidizing agent and the water chemistry [32,33,40-42]. These aspects are not further 

discussed here. It is sufficient to consider, that the observed electrochemical Fe0 oxidation is 

not necessarily coupled with species reduction by electrons from Fe0 (direct reduction). 

The last important feature from Tab. 1 is the presence of the couple CuII/Cu0 which is 

considered a model alloying element for bimetallic systems. It is clearly seen that water can 

not oxidize Cu0 (oxidative dissolution to Cu2+). Accordingly Cu0 acts as galvanic cell and 

facilitated Fe0 oxidative dissolution [9,53,54]. This process accelerates all other processes 

discussed above. Moreover, under anoxic conditions, FeII recycling in sustained (Eq. 11). 

Under oxic conditions, Cu0 dissolution is induced and resulted Cu2+ may sustain Fe0 oxidation 

(cementation). All these predictions are in tune with the observed increased efficiency of 

bimetallic systems. They also corroborate the view that bimetallic systems sustain an indirect 

reaction between Fe0 and dissolved species [53,54,57]. 
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Experience in publishing concepts and results on remediation with Fe0 shows that authors are 

regularly referred to the grey literature [34,57]. In particular, ITRC [34] is the fifth document 

published since 1999 by the Interstate Technology & Regulatory Council (50 F Street, NW, 

Suite 350, Washington, DC 20001) to investigate the development of Fe0 permeable reactive 

barriers as an “emerging remediation technology". However, the fifth edition failed to 

consider ground-breaking information available in the international literature from 2007 on 

[32,33,54] and intensively indexed in databases. Even though the content of these 

‘handbooks’ are from renowned scientists and practitioners, it is important that these studies 

be published in peer-reviewed journals, for example in form of “(Bi-)Annual reviews”. This 

approach will increase the credibility of the contained information and constitute something 

like an ‘authoritative basis’ to further shape the design, and management of Fe0 treatment 

systems and minimise any negative impacts. 

It is important to notice that the Glossary of  ref. [34] defines Fe0 as “a strong reducing 

agent”. While this definition is correct on a pure thermodynamic perspective (E0 = -0.44 V), 

under natural situations, Fe0 is at best a producer of reducing agents (FeII, green rust, H2) 

which are all instable species and are further transformed. Contaminants are certainly 

removed during this dynamic process [15]. The extent of contaminant chemical reduction, 

however, is difficult to discuss. Moreover, even reduced species should be removed from the 

aqueous phase [6,15,58,59]. Relevant contaminant removal mechanisms are adsorption, co-

precipitation, and adsorptive size-exclusion [58,59]. Adsorptive size-exclusion refers to the 

increased straining capacity due to porosity loss. Porosity loss is inherent to Fe0 filtration bed 

because iron corrosion is expansive in nature. In fact, the volume of each corrosion product 

(e.g. FeO, Fe3O4, Fe2O3, FeOOH, Fe(OH)3) is 2.1 to 6.4 times larger that the volume of a Fe 

atom [60-64]. 
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Irrespective from the availability of handbooks, any researcher starting in a new domain has 

to find his way in a jungle information. A good path is to start with textbooks, then read 

review articles (e.g. from databases) and then repeat some relevant experiments to test 

reproducibility before start own experiments. Testing repeatability includes verifying the 

correctness of mathematical equations. If this ‘basic’ approach were generally used, a false 

premise would not have survived for 20 years in an active field of research with actually more 

than 1500 peer-reviewed articles (Tab. 2). 

Since 1994 research within the field of "Fe0 technology" has boomed. On April 1st 2012, a 

search at “ACS publications”, “Science Direct” (Elsevier journals), “Springer journals”, and 

“Wiley journals” using the key word “zero-valent iron” suggested that up to 1871 peer-

reviewed articles may have been published (Tab. 2). This clearly demonstrates the interest 

within academia for this technology. Accordingly, it is urgent that active research is done on a 

common basis. 

The elevated proportion of scientists currently ignoring the state-of-the-art knowledge on 

remediation with Fe0 is reflected in Tab. 2 (also see ref. [65]). While some 1871 articles may 

have been published on remediation with Fe0, only some 273 have referenced ‘Noubactep’. 

Considering only the year 2011 at Elsevier, Noubactep has been referenced 37 times in 84 

articles on “zero-valent iron” and “water”,  this clearly shows that more than 50 % of all 

publications ignores the current state-of-the-art knowledge on ‘Fe0 remediation’. Moreover, 

journal manuscripts and grant proposals will continue to be rejected by established ‘experts’, 

the sole ‘curses’ of the applicants being to have been: (i) assiduous students trying to realize 

knowledge from their undergraduate lessons, or (ii) creative graduates willing to experience 

what should be ‘inherent in research science’: creativity [4]. 

The history of science is full of examples of primarily rejected ground-breaking ideas [66]. 

For example, Avogadro's hypothesis that equal volumes of all gases, under the same 

temperature/pressure conditions, contain equal numbers of molecules was initially rejected. 
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This hypothesis was later proven of key importance in solving many problems in chemical 

sciences. To date, the view that Fe
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0 is mostly a generator of reducing agents (H2 and FeII) and 

Fe oxides has been either severely refuted or just tolerated [67-73]. The tolerance is based on 

the simplification that, without Fe0, no secondary reducing agents could be available. 

Accordingly, Fe0 serves as the original source of electron donors (H, H2 and FeII). The present 

communication has refuted the named simplification and established that quantitative 

reduction can only result from secondary reducing agents. Accepting this ‘evidence’ is a 

prerequisite for further technology development. In fact, designing a system in which 

contaminant reduction should be mediated by a surface reaction is different from designing a 

system for continuous iron corrosion, sufficient to warrant contaminant removal by 

adsorption, co-precipitation and size-exclusion. 

5 Concluding remarks 

This communication is an expansion of some earlier ideas summarized in Noubactep [51]. 

The overall goal is to demonstrate that progress in 'iron for environmental remediation' cannot 

be achieved if the theory of the system is not established. The way forward is to revise the 

view that Fe0 is a reducing agent. The alternative view, that Fe0 is a producer of contaminant 

‘scavengers’, is in tune with textbook knowledge available before the discovery of this 

efficient technology. The alternative theory explained better how contaminant removal is 

achieved. Testing protocols for Fe0 materials [74] and experimental protocols for contaminant 

removal [75-77] are also provided. When extensively tested these protocols will allow rapid 

progress of the Fe0 remediation technology. Moreover, this science-based approach will ease 

the general technology acceptance. The participation of the entire community is required. 

In closing, it is wished that more attention is paid to theoretical works in Environmental 

Sciences. This is indeed a major requirement for creativity inherent in research [4,78]. The 

effectiveness of the current data-based approach is clearly underscored. Data should only be 

produced to fill gap of knowledge. Actually the current approach has led to the fact that 
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‘knowledge’ disproving textbooks has been accepted for 20 years. Moreover, proofs are 

requested from any ‘dissidents’ as if the aqueous iron corrosion was a new discovery. Given 

the broad consensus on this false premise [77,79,80], it is important that the mistake is 

corrected before Fe
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0 is presented in standard textbooks as a ‘reducing agent’ for 

environmental remediation. 
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Table 1: Standard electrode potentials of the Fe0/H2O system and some relevant related 

reactions. Apart from Fe

418 

419 

420 

421 

422 

III
(ads)/FeII

(ads) all electrode potentials are arranged in increasing order 

of E0. The higher the E0 value, the stronger the reducing capacity of Fe0 for the oxidant of a 

couple. The couples CuII/Cu0 (Eq. 4) and O0/O-II (Eq. 6) are considered to discuss the cases of 

bimetallic systems and reactions under oxic conditions respectively. 

Chemical reaction E0 Eq.

 (V)  

Fe0
(s) ⇔ Fe2+

(aq)  +  2 e- -0.44 (1) 

Fe2+
(ads) ⇔ Fe3+

(ads)  + e- -0.34/-0.65 (2) 

H+  + e- ⇔ ½ H2(g) 0.00 (3) 

Cu0
(s) ⇔ Cu2+

(aq)  + 2 e- 0.34 (4) 

Fe2+
(aq) ⇔ Fe3+

(aq)  + e- 0.77 (5) 

O2 + 2 H2O  + 4 e- ⇔ 4 OH- 0.81 (6) 

Reactions under anoxic conditions 

Fe0
(s) + 2 H+ ⇒ Fe2+

(aq)  +  H2(g)  (7) 

Fe2+
(ads)  +  H+ ⇒ Fe3+

(ads)  +  ½ H2(g)  (8) 

Fe0
(s) + 2 Fe3+

(aq) ⇒ 3 Fe2+
(aq)  (9) 

3 Fe(OH)2(s)  ⇒ Fe3O4(s) + H2(g) +  2 H2O  (10)

Cu0
(s)  +  2 Fe3+

(aq) ⇒ Cu2+
(aq)  +  2 Fe2+

(aq)  (11)

Reactions under oxic conditions 

Fe0
(s)  + ½ O2 + H2O ⇒ Fe2+

(aq)  +  2 HO-  (12)

2 Fe2+  +  ½ O2 + H2O ⇒ 2 Fe3+
(aq)  +  2 HO-  (13)

Cu0
(s)  + ½ O2 + H2O ⇒ Cu2+

(aq)  +  2 HO-  (14)

423 

424 
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Table 2: Results of a web-search for “Zero-valent iron” and “Noubactep” at four relevant 

publishers demonstrating the current interest within academia for the Fe

424 

425 

426 

427 

428 

0 technology (search: 

01 April 2012). The results for “Noubactep” was corrected to consider only the publication 

directly dealing with ‘Fe0 remediation’. 

 

Publisher ZVI Noubactep 

ACS publications 491 19 

Elsevier Journals 492 190 

Springer Journals 380 40 

Wiley Journals 508 24 

Total 1871 273 

429 

430 
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