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Abstract

Background: Conventional methods for phase I dose-escalation trials in oncology are based on a single treatment
schedule only. More recently, however, multiple schedules are more frequently investigated in the same trial.

Methods: Here, we consider sequential phase I trials, where the trial proceeds with a new schedule (e.g. daily or
weekly dosing) once the dose escalation with another schedule has been completed. The aim is to utilize the
information from both the completed and the ongoing schedules to inform decisions on the dose level for the next
dose cohort. For this purpose, we adapted the time-to-event pharmacokinetics (TITE-PK) model, which were originally
developed for simultaneous investigation of multiple schedules. TITE-PK integrates information from multiple
schedules using a pharmacokinetics (PK) model.

Results: In a simulation study, the developed approach is compared to the bridging continual reassessment method
and the Bayesian logistic regression model using a meta-analytic-predictive prior. TITE-PK results in better
performance than comparators in terms of recommending acceptable dose and avoiding overly toxic doses for
sequential phase I trials in most of the scenarios considered. Furthermore, better performance of TITE-PK is achieved
while requiring similar number of patients in the simulated trials. For the scenarios involving one schedule, TITE-PK
displays similar performance with alternatives in terms of acceptable dose recommendations. The R and Stan code
for the implementation of an illustrative sequential phase I trial example in oncology is publicly available
(https://github.com/gunhanb/TITEPK_sequential).

Conclusion: In phase I oncology trials with sequential multiple schedules, the use of all relevant information is of great
importance. For these trials, the adapted TITE-PK which combines information using PK principles is recommended.
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Background
Phase I trials constitute the first step in investigating the
safety of potentially promising therapies in humans [1]. In
many disease areas, phase I trials are conducted in healthy
subjects which are not expected to benefit from the ther-
apy. Phase I trials in healthy subjects include single and
multiple ascending trials [2]. In the single ascending dose
trials, the effects of a single dose on subjects are investi-
gated, whereas multiple ascending dose trials investigate
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the effects of multiple doses. In life-threatening diseases
such as in oncology, however, patients with few therapeu-
tic options are recruited for a phase I trial, since therapies
are usually highly toxic [3]. The main assumption is that
both the probability of toxicity and the probability of effi-
cacy are increasing with dose. Thus, the drug is expected
to have very little efficacy at low doses [3]. In this paper,
we focus on phase I trials in oncology.
Phase I trials in oncology traditionally enroll small

cohorts of patients who are treated in treatment cycles.
The observed toxicities are classified into dose-limiting
toxicities (DLT) and non-DLT. Each time a cohort com-
pletes the first cycle at a given dose level, the available data
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are assessed to decide how the trial proceeds. The main
aim is to identify the maximum tolerated dose (MTD).
The MTD can be defined as the dose level at which the
probability of DLT is closest to a target probability, usu-
ally 25% or 30% [4]. Typically, the estimation of the MTD
is based on the toxicity data of the first cycle only. The
setup of a phase I trial includes pre-specified doses to be
evaluated, a starting dose which is considered safe, cohort
size, maximum sample size and other stopping rules. If
all doses have very low DLT probabilities, the dose which
has DLT probability closest to the target probability can
be declared as theMTD, after the maximum sample size is
reached. Furthermore, the starting dose of the trial is tra-
ditionally determined one tenth of the lethal dose for mice
or one sixth the highest non-severely toxic dose in a more
sensitive species such as monkeys [5].
Standard methods for phase I dose-escalation trials in

oncology include algorithm-based methods such as 3+3
designs [6] and model-based methods such as the con-
tinual reassessment method (CRM) [7]. The CRM uses
a statistical model to estimate the relationship between
the dose and the probability of DLT, which informs
dose-escalation decisions. The Bayesian logistic regres-
sion model (BLRM) [4, 8] is a two-parameter version
of the CRM which utilizes the escalation with the over-
dose control (EWOC) [9] criterion. The EWOC criterion
aims to reduce the risk of overdosing patients by choosing
doses with a posterior probability of being above the true
MTD lower than a feasibility bound.
In addition to the dose administered, the frequency

of administration, known as the schedule, is a crucial
part of a treatment plan of any phase I trial. In practice,
sometimes it is required to investigate multiple sched-
ules, e.g. a dose given once a day or an adequately larger
dose given once a week. Hence, the probability of DLT
for each patient is a function of both the dose and the
schedule. Simultaneous investigation of dose and sched-
ule within a phase I trial has gained some attention in the
literature. In such trials, the doses and the schedules are
altered for different cohorts of patients within the same
trial. Methods for simultaneous investigation of dose and
schedule combination include a Bayesian time-to-event
model by Braun et al. [10] and the partial order contin-
ual reassessment method by Wages et al. [11]. Recently,
Günhan et al. [12] proposed an alternative dose-schedule
finding method, a Bayesian time-to-event pharmacoki-
netics model (TITE-PK), which uses pharmacokinetics
(PK) principles. Unlike other phase I methods, TITE-PK
makes use of an exposure-response model that is often
more informative than a standard dose-response model.
TITE-PK models the relationship between time-to-first
DLT and an exposure measure of the drug obtained
by a pseudo-PK model in a Bayesian model-based
approach. TITE-PK has been shown to have desirable

operating characteristics in terms of finding an accept-
able dose and schedule simultaneously in simulation
studies [12].
In this paper, we consider an alternative phase I design

in which multiple treatment schedules are investigated
sequentially, rather than simultaneously. The schedules
are denoted by Si where i = 1, 2, . . . , k. The sequen-
tial multiple schedule design proceeds as follows. In the
first step, cohorts of patients are enrolled with S1 and
the trial is continued until the MTD is declared for S1.
In the second step, the trial continues with schedule S2
and the starting dose can be informed from the S1. Dose-
escalation decisions are informed by utilizing information
from both schedules S1 and S2. That is, data from both the
completed schedule S1 and the ongoing schedule S2 are
integrated. Once the MTD for the Schedule S2 is deter-
mined, the trial can continue with schedule S3 and so on.
In other words, the MTD for schedule Si declared in the
ith schedule of the phase I trial.
A sequential phase I trial with different strata, where

strata may correspond to different patient populations,
formulations, or treatment schedules etc., also called a
bridging trial, was considered by Liu et al. [13] among
others [14–16]. Liu et al. [13] introduced the bridging
CRM (B-CRM) to borrow information from different
strata. B-CRM takes into account potential heterogeneity
between different strata using a Bayesian model averag-
ing approach. Neuenschwander et al. [14] suggest the use
of BLRM with a meta-analytic-predictive (MAP) prior
[17] approach (BLRM-MAP) to take advantage of the
completed step of the trial with different strata.
Borrowing approaches are based on discounting the

existing information at the cost of increasing the needed
sample size to achieve an acceptable performance in a new
trial. Here we suggest the use of a modelling approach
based on PK principles in order to increase the statis-
tical efficiency. Therefore, we adapted the TITE-PK to
design and analyze sequential phase I trials with multi-
ple schedules. In the first step, TITE-PK is used to inform
dose-escalation decisions for schedule S1 until the MTD
is declared or the trial is stopped. In the next step, TITE-
PK models the data from both the completed (S1) and
the ongoing (S2) steps of the trial directly, but only rec-
ommending doses for Schedule S2. TITE-PK can be used
for any number of schedules. We investigate the oper-
ating characteristics of TITE-PK for phase I trials with
one schedule and sequential phase I trials with multi-
ple schedules through simulations. We provide simulation
results comparing the performance of TITE-PK to CRM
and BLRM for phase I trials involving one schedule and
to B-CRM and BLRM-MAP for sequential phase I tri-
als involving multiple schedules. This paper builds on
the previous work by Günhan et al. [12], and offers two
main contributions. Firstly, we adapt TITE-PK to phase I
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dose-escalation trials with sequential (rather than simul-
taneous) multiple schedules. Secondly, we apply TITE-PK
for a standard phase I dose-escalation trial, that is phase I
trial involving a single schedule only.

Illustrative example: everolimus trial
Everolimus (RAD001) is an oral inhibitor of mammalian
target of rapamycin, that has been developed as an anti-
tumor agent [18]. Everolimus is approved by the US FDA
to treat various conditions including certain types of pan-
creatic cancer and gastrointestinal cancer [18] and certain
type of tuberous sclerosis [19]. The elimination half-life
and the absorption rate of everolimus for cancer patients
were reported as 30 (hours) and 2.5 (1/hours), respectively
[20]. Everolimus was included in a phase Ib trial in com-
bination with standard of care (etoposide and cisplatin
chemotherapy) to identify a feasible dose and schedule in
the treatment of small cell lung cancer (ClinicalTrials.gov
identifier: NCT00466466) [21]. Note that this trial did not
include the initial human exposure to everolimus, since
everolimus was investigated for different types of diseases,
previously. Hence, this trial was an example of an effort
for drug re-purposing.
The everolimus trial was open-label andmulti-centered.

Patients were assigned alternately to either weekly or daily
schedules of everolimus in treatment cycles of 21 days. In
the everolimus trial, doses in both schedules were esca-
lated simultaneously and analysed separately from one
another. A Bayesian time-to-event model [22] was used to
inform the dose-escalation decisions. The final data can
be obtained from the supplementary material of Besse et
al. [21]. The dataset is displayed in Table 1. All DLT were
reported at day 15. Based on investigator and medical
monitor opinion, 2.5mgwith daily schedule was identified
as the MTD [21].
We used this trial to illustrate the TITE-PK approach for

sequential designs, because (1) the trial is a phase I dose-
escalation trial in oncology, (2) the trial evaluated two
different schedules (weekly and daily dosing), and (3) the
large number of DLT allows a good assessment on the per-
formance of the TITE-PK.Wewill analyse the final dataset

Table 1 Data of the everolimus trial. The treatment schedules
which are used, the doses which are administered in mg, number
of patients, and number of DLT are given

Schedule Dose Number Number

(mg) of patients of DLT

Weekly 20.0 5 0

Weekly 30.0 13 4

Daily 2.5 4 2

Daily 5.0 6 3

as if the trial had been conducted sequentially, specifically
assuming S1 is weekly schedule and S2 is daily schedule.
This paper is organized as follows. In the following

section, we describe statistical methods for phase I tri-
als with sequential multiple schedules. We review the
BLRM and CRM. Then, we develop TITE-PK for sequen-
tial investigation of multiple schedules. The performance
of TITE-PK and comparators are studied in simulations,
and in the everolimus example. We close with a brief
discussion and some conclusions.

Methods
The Bayesian logistic regression model (BLRM)
Themodels described in this section follow the BLRM and
BLRM MAP described by Neuenschwander et al [8]. The
BLRM is a logistic regression model in the logarithm of
a standardized dose. For dose d, the number of patients
with a DLT (rd) in a cohort of size nd are assumed to be
binomially distributed

rd ∼ Bin(πd, nd)

with DLT probabilities (πd) and two parameters (α1 and
α2)

logit(πd) = log(α1) + α2 log(d/d∗),
where d∗ is the reference dose used for standardization of
the dose. At the reference dose, the odds of the DLT are α1.
Thus, the reference dose is critical in choosing a prior for
α1. The reference dose is defined such that the reference
dose d∗ is set to the anticipated MTD at which an odds of
1/2 is used as mean for the α1 prior.
To inform the dose-escalation decisions, the posterior

distribution of the DLT probability πd is used. The DLT
probabilities are classified into three categories as follows

(i) πd < x Underdosing (UD)
(ii) x ≤ πd ≤ y Targeted toxicity (TT)
(iii) πd > y Overdosing (OD)

Escalation or de-escalation decisions are informed using
the overdosing probability of dose d, P(πd > y). The
EWOC criteria is fulfilled, if P(πd > y) is smaller than
the pre-specified feasibility bound, a, which was recom-
mended as 0.25 by Babb et al. [9]. Following this advice,
we use a = 0.25 throughout the manuscript. Among the
doses which fulfill the EWOC criterion, the highest dose
is recommended for the next cohort. Once the maximum
sample size is reached, the highest dose among the doses
satisfy EWOC criterion is declared as the MTD.
In the absence of relevant historical data, Neuen-

schwander et al [8] suggest the use of weakly informative
priors (WIPs) for α1 and α2 instead of flat priors. There are
two problems regarding flat priors. Firstly, no formal anal-
ysis is possible until one DLT is observed in the trial, since
the posterior is proportional to the likelihood. Secondly,
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flat priors on the α1 and α2 result in U-shaped priors for
the DLT probabilities [4]. Their suggestedWIP is a bivari-
ate normal distribution (log(α1), log(α2)) ∼ N (m, S)with
means (m1 = logit(πd∗),m2 = 0), standard deviations
(σ1 = 2, σ2 = 1), and the correlation ρ = 0 [8]. Here, πd∗
is the anticipated DLT probability at the reference dose.
A derivation of the suggested WIP for the BLRM can be
obtained using quantiles from minimally informative uni-
modal Beta distributions [4]. An extension of the BLRM is
used to incorporate different schedules in a phase I trial,
which we describe in the following.

The BLRMMAP
The BLRM with a meta-analytic predictive (MAP)
approach [23, 24] can be used for informing dose-
escalation decisions in a phase I study with multiple
schedules. Hereafter, we refer this method as the BLRM
MAP. In the BLRM MAP approach, the doses from the
first schedule (S1) are re-scaled so that two sets of doses
from different schedules are comparable. For example,
if S1 is weekly dosing and S2 is daily dosing, the doses
from S1 are divided by 7. This ensures that the respective
nominal dose in each schedule results in the same cumula-
tive dose. Then, a meta-analytic-predictive (MAP) prior is
derived using the data of the S1 assuming some between-
schedule heterogeneity for the parameters. Furthermore,
it may be desirable to make the MAP prior more robust
for possible unwarranted use of data from S1. To achieve
this, the robustMAP prior (BVNRMAP) can be obtained by
mixing theMAP prior (BVNMAP) with theWIP (BVNWIP)
[8, 17], i.e.

BVNRMAP = wBVNMAP + (1 − w)BVNWIP,

where w is the weight which can be chosen, for exam-
ple, from the range of 0.5 and 0.9. Neuenschwander
et al. [8] suggested the use of w = 0.8, and in this paper
we follow their suggestion. After the robust MAP prior is
derived, the BLRM is used to inform dose-escalation deci-
sions. The R package OncoBayes2 [25] can be used to
implement the BLRM and the BLRMMAP.

The continual reassessment method (CRM)
The models described in this section follow the CRM and
B-CRM described by Liu et al. [13]. For dose d, pd is the
prespecified DLT probability, also known as prior skele-
tons. The relationship between the prior skeletons pd and
DLT probabilities πd are given by a power model

πd = pexp(α)

d

where α is the model parameter. For the dose-escalation
decisions, the posterior mean of the πd is used. The dose
with posterior mean of πd closest to the target probability
φ is recommended for the next cohort. Once the maxi-
mum sample size is reached, the dose with posterior mean

of πd closest to the target probability is declared as the
MTD.
Following Liu et al. [13], we use a WIP for the α, namely

N (0, 22). To determine the prior skeletons, we used the
method developed by Lee and Cheung [26].

The bridging CRM (B-CRM)
We now consider phase I dose-escalation trials with
sequential multiple schedules. Assume that the first step
of the phase I trial with schedule S1 is completed with
JS1 doses, namely b1, b2, . . . , bJS1 . The first step of the trial
resulted in binomial data DS1 = (xj,mj) where xj is the
number of patients who experienced DLT and mj is the
cohort size at dose bj. Firstly, we can estimate the DLT
probabilities using a probit model, i.e.

π
(P)
j ≡ π(P)(bj) = �(β0 + β1 bj),

where the superscript in π
(P)
j refers a parametric estimate;

� is the cumulative distribution function of the standard
normal distribution; β0 and β1 are the model parameters.
Secondly, we estimate a non-parametric estimate of the
DLT probabilities using isotonic regression [27]

π
(NP)
j = max0≤u≤j minj≤v≤JS1

∑v
k=u xk∑v
k=u mk

.

The isotonic estimates of DLT probabilities can be
obtained using the pooled-adjacent-violators algorithm
[28].
In order to gain advantage of both parametric and

non-parametric estimates of DLT probabilities, we use a
mixture estimator of DLT probabilities:

πj = wj π
(P)
j + (1 − wj) π

(NP)
j ,

where the weightswj are calculated from data. The follow-
ing weights are used: wj = λj

λj+1 where λj is the likelihood
ratio evaluated at dose level j under the probit model and
isotonic regression. The λj is given by

λj =
(
π

(P)
j

)xj (
1 − π

(P)
j

)mj−xj

(
π

(NP)
j

)xj (
1 − π

(NP)
j

)mj−xj .

We estimated the DLT probabilities from the completed
part of the trial involving schedule S1. The estimated DLT
probabilities are used as the prior skeletons pj for the
analysis of next step of the phase I trial, that is involving
schedule S2. Assume that there are J doses from sched-
ule S2 in the next step of the trial, namely d1, d2, . . . , dJ .
To take into account heterogeneity in DLT probabilities
between schedules, we use three sets of prior skeletons:

1 pj = πj

2 pj =
{

πj+1 for j = 1, . . . , J − 1
πJ+1
2 for j = J
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3 pj =
{

πj−1 for j = 2, . . . , J
π1
2 for j = 1

The prior skeleton 1 assumes that the dose-toxicity
curve obtained by the schedule S1 is same to the dose-
toxicity curve of the schedule S2. Prior skeletons 2 and
3 shift the dose-toxicity curve one dose level up and one
dose level down, respectively. To incorporate three dif-
ferent prior skeletons into the CRM model, a Bayesian
model averaging approach [29] is used to estimate DLT
probabilities. Then, the standard CRM is used to inform
dose-escalation decisions.
For the CRM and B-CRM, the trial is terminated for

safety, if the following rule is satisfied: P(π1 > 0.30) <

0.90 where π1 is the DLT probability of the lowest dose.
For the CRM implementation, we used the R package
bcrm [30]. For the B-CRM, we use the publicly available
R-code which is provided as the supplementary material
of Liu et al. [13].

TITE-PK for sequential phase I trials
TITE-PK for simultaneous investigation of multiple
schedules in phase I trials were introduced in Günhan
et al. [12], here we adapt it for sequential investigation
of multiple schedules. The time-to-first DLT events are
modeled using a time-varying (non-homogeneous) Pois-
son process. The hazard function is assumed to depend
on an exposure measure of the drug (E(t)):

h(t) = β E(t) (1)

where β is the only parameter to estimate in the model.
The exposure measure is calculated using a pseudo-

PK model which consists of two ordinary differential
equations:

dC(t)
dt

= −ke C(t) and C(0) = 0

dCeff(t)
dt

= keff (C(t) − Ceff(t)) and Ceff(0) = 0.

where C(t) and Ceff(t) are the concentrations of drug in
the central compartment and in the so-called effect com-
partment, respectively. Due to non-identifiability, the vol-
ume in both compartments is set to unity by convention
here. Furthermore, ke is the elimination rate constant and
keff is the PK parameter which governs the delay between
the concentration in the central compartment and the
concentration in the effect compartment. The parameter
ke is parametrized using the elimination half-life Te, that
is ke = log(2)

Te
. The parameters ke and keff are assumed to be

known from previous analyses, for example from another
previously studied indication or pre-clinical data. In other
words, the drug concentrations in the effect compartment
(Ceff(t)) is calculated by treating the PK parameters as
known, following Cox et al. [31]. Thus, PK measurements

are not analysed together with the toxicity data, as is done
for example by Ursino et al [32]. The model can be seen as
a kinetic-pharmacodynamic model (K-PD) described in,
for example, Ooi et al. [33].
TITE-PK uses an adapted EWOC criterion. For this

purpose, the measure of the interest is the probability of
a patient experiencing at least one DLT within the first
cycle (shortly the end-of-cycle 1 DLT probability), P(T ≤
t∗|Ceff(t∗|d, f )), where d and f refer to the dose and fre-
quency of administration, respectively. Using basic event
history analysis [34], we have the following equation

P(T ≤ t∗|Ceff(t∗|d, f )) = 1 − e−H(t∗|Ceff(t∗|d,f )), (2)

which describes the relationship between the end-of-cycle
1 probabilities and the cumulative hazard function H(t).
All patients without a DLT up to the end of cycle 1 will be
censored at the end of cycle 1, and patients with a DLT are
censored at the time of a DLT. The event indicator δj is 0
for censored events and 1 for DLT events. We can write
the overall likelihood as

L(T ,C|β) =
J∏

j=1
f (Tj|β)δj S(Cj|β)(1−δj)

where J is the total number of the patients, f (Tj|β) is the
probability density function, and S(Cj|β) is the survivor
function.
Using Eq. 2, it can be shown that

cloglog(P(T ≤ t∗|Ceff(t∗|d, f ))) = log(β)

+ log(AUCE(t∗|Ceff(t∗|d, f ))) (3)

where cloglog(x) = log(−log(1 − x)) and AUCE(t) is the
area under the curve of the exposure measure over time.
To help prior specification, E(t) is obtained by scaling

Ceff(t) using a reference schedule (reference dose d∗ and
frequency f ∗) at the end of the first treatment cycle (cycle
1: t∗) such that

AUCE(t∗|Ceff(t∗|d∗, f ∗)) = 1. (4)

By combining Eqs. 3 and 4, it follows that for the
reference schedule cloglog(P(T ≤ t∗|Ceff(t∗|d∗, f ∗)) =
log(β). This relationship suggest to constrain β to be
positive, which ensures that h(t) ≥ 0, since E(t) ≥ 0
for all t (see Eq. 1). The use of a reference schedules
is analogous to the reference dose in the BLRM (see
The Bayesian logistic regression model (BLRM) sub-
section). The relationship between β and P(T ≤
t∗|Ceff(t∗|d∗, f ∗)) helps us to specify a prior distri-
bution for the parameter β . Following [8], we sug-
gest a normal prior distribution N (cloglog(P∗(T ≤
t∗|Ceff(t∗|d∗, f ∗)), 1.252)) for the log(β). Here, P∗(T ≤
t∗|Ceff(t∗|d∗, f ∗)) is the anticipated end-of-cycle 1 DLT
probability at the reference schedule.
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Similar to the BLRM, the posterior distributions of
end-of-cycle 1 DLT probabilities are classified into three
categories in order to inform dose-escalation decisions:

(i) P(T ≤ t∗|Ceff(t∗|d, f )) < x Underdosing
(UD)

(ii) x ≤ P(T ≤ t∗|Ceff(t∗|d, f )) ≤ y Targeted toxicity
(TT)

(iii) P(T ≤ t∗|Ceff(t∗|d, f )) > y Overdosing (OD)

The EWOC criterion is fulfilled, if the overdosing prob-
ability P(P(T ≤ t∗|Ceff(t∗|d, f )) > y) is smaller than the
feasibility bound a. For the feasibility bound, we use 0.25
as in the BLRM. Analogous to the monotonicity of dose-
DLT probability assumption of CRM, TITE-PK assumes
the monotonicity of the exposure measure and the end-
of-cycle 1 DLT probability. That is, AUCE(t∗|Ceff(t∗|d, f ))
is proportional to the end-of-cycle 1 DLT probabilities.
Among the dose and schedule combinations which fulfill
the EWOC criteria, the combination which has the low-
est AUCE(t∗|Ceff(t∗|d, f )) is recommended for the next
cohort.
In the case of sequential investigation of multiple sched-

ules, initially TITE-PK is used to conduct the phase I trial
with S1 until the MTD is declared or trial is stopped since
all doses are found to be too toxic. In this step, the fre-
quency of administration is the same for dose-escalation
decisions. Then, cohorts are recruited with Schedule S2.
For dose-escalation decisions, the information from the
phase I trial with S1 is treated as data together with the
new information generated from the phase I trial with
S2. Since TITE-PK is an exposure-response model, there
is no need to re-scale the doses from different schedules
to make them comparable. As opposed to BLRM MAP
and B-CRM methods, data from the completed trials is
treated as part of the data instead of as part of the prior
distribution.

Software implementation
We implemented TITE-PK in Stan [35] via the rstan
R package, which employs the No-U-Turn sampler, an
adaptive form of Hamiltonian Monte Carlo sampling.
The No-U-Turn sampler belongs to the family of Markov
chain Monte Carlo (MCMC) methods. It has been
argued that the No-U-Turn sampler is more efficient
and robust sampler than Gibbs sampling or Metropolis-
Hastings used byWinBUGS [36] for models with complex
posterior distributions [35]. For the application and
simulations, four parallel chains of 1,000 MCMC iter-
ations after warm-up of 1,000 iterations are generated.
Convergence diagnostics are checked using the Gelman-
Rubin statistics and traceplots in the application. There
were no divergences reported for the implementation
of the application. The R and Stan code to analyze the

everolimus application is publicly available from Github
(https://github.com/gunhanb/TITEPK_sequential). The
main programming code is the Stan code from the linked
folder, which conducts the Bayesian computation to cal-
culate posterior distributions. The method can be applied
by changing R-code based on the application, for example
different doses or schedules, while keeping the Stan code.

Simulation study
We compared the operating characteristics of TITE-PK
and alternative methods in a simulation study. The simu-
lation study follows the clinical scenario evaluation frame-
work introduced by Benda et al. [37] and it is inspired by
the everolimus trial. As the target probability φ for the
CRM and B-CRM, we use 0.30 following Liu et al. [13].
Also, doses with DLT probabilities between 0.20 and 0.40
are considered acceptable in our simulations following Liu
et al. [13]. To have a fair comparison between the meth-
ods, we use (0.20 - 0.40) to define the targeted toxicity
interval of BLRM and TITE-PK, in other words x = 0.20
and y = 0.40 for three categories described in subsection
The BLRM.
Firstly, we considered scenarios only involving one

schedule to compare the performance of TITE-PK to
CRM and BLRM. These are Scenarios 1-6, which are listed
in Table 2. Here, daily doses of 2.5, 5, 7.5, 10, 12.5, and
15 (mg) are investigated. Also, the starting dose is 2.5 mg
for all methods. Secondly, we considered scenarios repre-
senting sequential phase I trials. These are Scenarios 7-13,
which are listed in Table 3 and displayed in Fig. 1. Scenar-
ios 7-13 consists of phase I trials with two steps. In the
first step, doses of 2.5, 5, 7.5, 10, 12.5, 15 (mg) with the
dosing frequency of 48 hours (S1) and in the second step,
doses of 2.5, 5, 7.5, 10, 12.5, 15 (mg) with daily dosing (S2)
are administered. There methods are assessed in Scenar-
ios 7-13: TITE-PK, Bridging CRM (B-CRM), BLRM using
MAP prior (BLRMMAP).
The DLT probabilities of the doses in the simulations are

determined to reflect clinically relevant settings. Scenario

Table 2 Scenarios 1-6 in the simulation study. Doses with dose
limiting toxicities in the targeted toxicity interval (0.20 - 0.40) are
in boldface. Scenarios 1-6 represent phase I trials with one
schedule, that is daily schedule

Doses in mg

Scenario 2.5 5 7.5 10 12.5 15

1 0.05 0.10 0.20 0.30 0.50 0.70

2 0.30 0.40 0.52 0.61 0.76 0.87

3 0.05 0.06 0.08 0.11 0.19 0.34

4 0.06 0.08 0.12 0.18 0.40 0.71

5 0.10 0.22 0.31 0.45 0.60 0.72

6 0.50 0.55 0.61 0.69 0.76 0.87

https://github.com/gunhanb/TITEPK_sequential
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Table 3 Scenarios 7-13 in the simulation study. Daily doses with dose limiting toxicities in the targeted toxicity interval (0.20 - 0.40) are
in boldface

Doses with Schedule S1 Doses with Schedule S2

Scenario Schedule 2.5 5 7.5 10 12.5 15 2.5 5 7.5 10 12.5 15

7 S1 0.05 0.07 0.09 0.10 0.13 0.18

S2 0.08 0.12 0.16 0.18 0.23 0.27

8 S1 0.08 0.12 0.16 0.20 0.23 0.27

S2 0.18 0.26 0.34 0.45 0.49 0.55

9 S1 0.03 0.12 0.28 0.40 0.54 0.62

S2 0.20 0.30 0.45 0.50 0.60 0.75

10 S1 0.10 0.20 0.34 0.40 0.49 0.55

S2 0.35 0.40 0.45 0.57 0.67 0.80

11 S1 0.05 0.07 0.09 0.15 0.22 0.28

S2 0.30 0.35 0.48 0.52 0.61 0.70

12 S1 0.45 0.50 0.55 0.65 0.75 0.85

S2 0.48 0.56 0.62 0.70 0.80 0.88

13 S1 0.18 0.26 0.34 0.45 0.49 0.55

S2 0.08 0.12 0.16 0.18 0.23 0.27

Fig. 1 Scenarios 7-13 in the simulation study. Each scenario includes two curves of dose and DLT probabilities, which represents two schedules. Two
schedules are the frequency of administration of 48 (S1) and 24 hours (S2). The horizontal dashed lines represent the boundaries of the targeted
toxicity interval
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mg is decreased substantially, namely from 0.40 to 0.18
for BLRM-MAP, and from 0.14 to 0.00 for TITE-PK. For
CRM, the probability P(π1 > 0.30) is also decreased from
0.80 to 0.67. The reduction of the overdosing probabilities
of 2.5 mg seems reasonable, since in the weekly sched-
ule data, no DLT were observed in the 5 patients with 20
mg and 4 DLT were in the 13 patients with 30 mg. The
interval estimates of 2.5 mg and 5 mg obtained by TITE-
PK are shorter, hence more precise estimates compared to
BLRM-MAP and B-CRM. All three methods suggest that
daily 2.5 mg is sufficiently safe, hence it can be declared as
the MTD which was the conclusion of the original phase I
trial.
As pointed out in Methods section, by construction of

TITE-PK, the elimination half-life Te is treated as known.
To investigate the influence of misspecification of the Te
parameter, we fit TITE-PK using Te ranging from 5 to
50 hours. The timing of all DLT (in total 9 DLT) were
reported at day 15. To examine what would be the influ-
ence of the timing of DLT, we also fit TITE-PK to two
hypothetical datasets. Early DLT dataset and late DLT
dataset are created by changing timing of DLT from day 15
to day 1.5 and to day 20.5, respectively. Posterior estimates
of DLT probabilities for different Te values and for differ-
ent timing of DLT are shown in Fig. 3. The middle plot
corresponds to the original everolimus trial data. Firstly,
the posterior medians and credible intervals obtained by
different Te values look very similar. In practice, a reli-
able estimate of elimination half-life is often not available.
Hence, these results are reassuring for the practicality of
TITE-PK. Secondly, timing of DLT has a crucial affect
on the posterior estimates, and hence the overdosing

probabilities. Having the same number of DLT, the earlier
the DLT happened, the higher the overdosing probability
of the corresponding dose estimated. This makes sense,
since one would expect the drug to be more toxic if DLT
happened earlier than later.

Discussion
In this manuscript, we considered a sequential trial in
which trial with schedule S1 is already completed. Another
type of a sequential trial can be designed to use the so-
called concurrent co-data [14]. That is, the trial with
Schedule S1 is still ongoing, and we would like to utilize
the information from the Schedule S1 to inform dose-
escalation decisions with Schedule S2 (and vice versa).
TITE-PK can be used for such designs as well. We did
not investigate these situations, since these are beyond the
scope of the paper.
In a sequential phase I trial, strata sometimes refer to

other than schedules, e.g. patient populations. In such sit-
uations, the integration of different strata can be achieved
using aMAP approach. Since TITE-PK is parametrized by
mimicking the interpretable parameters of the BLRM, it
can be extended to use a MAP approach like the BLRM.
A key strength of the TITE-PK approach is its ability
to integrate the data from different treatment sched-
ules in a model based approach. This makes ad-hoc
approaches like dose re-scaling obsolete which reduces
the need for strong discounting of historical data from
different schedules. However, discounting may still be
needed to account for other sources like different patient
populations. Recently, Li and Yuan [16] introduced a
method to find the MTD for paediatric dose-escalation

Fig. 3Misspecification of elimination half-life Te and different timing of DLT. Using different values of Te , posterior median, 50% and 95% equi-tailed
credible intervals for end-of-cycle 1 DLT probabilities obtained by TITE-PK for two hypothetical datasets (early DLT and late DLT) and the original
everolimus trial dataset are shown. Early DLT dataset and late DLT dataset are created by changing timing of DLT from day 15 to day 1.5 and to day
20.5, respectively. Data from both weekly and daily schedules are included in the analysis
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trial by incorporating information from the concurrent
adult data. Their method is based on the CRM and
uses Bayesian model averaging to control discounting
from the adult data. The BLRM MAP approach makes
the assumption of the exchangeability between different
schedules. Instead of using a MAP prior, one can use
exchangeability/non-exchangeability (EX-NEX) [25, 38]
approach for phase I trials with multiple schedules, which
relaxes the exchangeability assumption.
The monotonicity assumption of the exposure and DLT

probabilities is often very reasonable but could be con-
sidered a limitation of TITE-PK. Similarly, the BLRM and
the CRM assumes the monotonicity of the doses and
DLT probabilities. Since, we have used a linear PK model
within TITE-PK, the monotonicity of the exposure and
DLT probabilities implies the monotonicity of the dose
and DLT probabilities.
Themain purpose of the pseudo-PKmodel is to account

for the dose and schedule (frequency of administration).
This is done in a relatively approximate way and these
parts of the model can be improved in a future work. We
see a number of challenges about expanding the model
to also include real PK data and a realistic PK model. An
important challenge is operational, that is PK data is com-
monly only available with some delay as compared to DLT
data. Furthermore, coupling the PK with the PD model
leads to challenges implied by joint models which need
to be addressed (like consequences of model misspecifi-
cation in either model). However, one can consider alter-
native PK models, for instance a first-order absorption
linear one compartment model instead of the described
pseudo-PK model.
In the simulations where we investigated phase I tri-

als with one schedules (Scenarios 1-6), we assumed the
monotonicity of dose and DLT probabilities. When there
is a heavy violation of the assumption of the monotonic-
ity (as in Scenarios 13), the operating characteristics are
expected to be weaker compared to bridging CRM or
BLRM MAP. The violation of the assumptions occurred,
since there is a clear conflict in exposure and DLT pro-
files between different schedules. Such violations can be
informed using the external PK data from the ongoing
trial. An extension combining TITE-PK with MAP could
be more useful for such situations.

Conclusions
We have adapted TITE-PK for efficiently estimating
the maximum tolerable dose in sequential phase I tri-
als involving multiple schedules. To integrate data from
different schedules, TITE-PK makes use of exposure-
response modelling considering kinetic drug properties.
Moreover, we have demonstrated that TITE-PK can be
used as an alternative to the standard methods like the
BLRM or CRM to conduct phase I trials with only one

schedule. In these trials, we have demonstrated that TITE-
PK displays similar performance compared to CRM and
BLRM. In scenarios with sequential phase I trials, TITE-
PK mostly displays superior performance in terms of
acceptable dose recommendations in comparison to the
bridging CRM and BLRM usingMAP approach. An appli-
cation involving weekly and daily schedules is used to
illustrate TITE-PK. Also, using the application, we have
shown that TITE-PK is robust against themisspecification
of the PK parameter elimination half-life.
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