Investigating polygenic burden in age at disease onset in bipolar disorder: Findings from an international multicentric study

Janos L Kalman1,2,3,* | Sergi Papiol1,2,4 | Andreas J Forstner5,6,7 | Urs Heilbrunner1,8 | Franziska Degenhardt5 | Jana Strohmaier9 | Mazda Adli10 | Kristina Adorjan1,2 | Nirmala Akula11 | Martin Ala12 | Heike Anderson-Schmidt1,8 | Till FM Andlauer13 | Ion-George Anghelescu14 | Raffaella Arda15 | Bábara Arias16 | Volker Arolt17 | Jean-Michel Aubry18 | Lena Backlund19 | Kim Bartholdi1 | Michael Bauer20 | Bernhard T Baune21 | Thomas Becker22 | Frank Bellivier23 | Antonio Benabarre24 | Susanne Bengesser25 | Abes Kumar Bhattacharjee26 | Joanna M Biernacka27 | Armin Birner25 | Clara Brichant-Potjej23 | Monika Budde1 | Pablo Cervantes28 | Caterina Chillotti15 | Sven Cichon5,7 | Scott R Clark21 | Francesc Colom29 | Ashley L Comes1,3 | Cristiana Cruceanu13,28 | Piotr M Czerski30 | Udo Dannlowski17 | Alexandre Dayer18 | Maria Del Zompo31 | Jay Raymond DePaulo32 | Detlef E Dietrich33 | Bruno Étain23 | Thomas Ethofer34 | Peter Falka2 | Andreas Fallgatter34 | Christian Figge35 | Laura Flatau1 | Here Folkerts36 | Louise Frisen19 | Mark A Frye27 | Janice M Fullerton37,38 | Katrin Gade1,8 | Sébastien Gard39 | Julie S Garnham12 | Fernando S Goes32 | Maria Grigoroiu-Serbanescu40 | Anna Gryaznova1 | Maria Hake1 | Joanna Hauser30 | Stefan Herms5,7 | Per Hoffmann5,7 | Liping Hou11 | Markus Jäger22 | Stéphane Jamain41 | Esther Jiménez24 | Georg Juckel42 | Jean-Pierre Kahn43 | Layla Kassem44 | John Kelsoe26 | Sarah Kittel-Schneider45 | Sebastian Kliwicki46 | Farah Klohn-Sagathislam1,2 | Manfred Koller47 | Barbara König48 | Carsten Konrad49 | Nina Lackner25 | Gonzalo Laje11 | Mikael Landén50,51 | Fabian U Lang22 | Catharina Lavebratt39 | Marion Leboyer41,52 | Susan G Leckband53 | Mario Maj54 | Mirko Manchia55,56 | Lina Martinsson57 | Michael J McCarthy26 | Susan L McElroy58 | Francis J McMahon11 | Philip B Mitchell59,60 | Marina Mitjans61 | Francis M Mondimore32 | Palmiero Monteleone54,62 | Vanessa Nieratschker34 | Caroline M Nievergelt26 | Tomas Novák63,64 | Urban Ösby65 | Andrea Pfennig20 | James B Potash66 |

1Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
2Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
3International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
4Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
5Institute of Human Genetics, University of Bonn and Department of Genomics, Life & Brain Center, Bonn, Germany
6Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
7Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
8Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August University Göttingen, Göttingen, Germany
9Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
10Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
11Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Dept of Health & Human Services, Bethesda, MD, USA
12Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
13Max Planck Institute of Psychiatry, Munich, Germany
14Private Neuropathic Hospital Dr. med. Kurt Fontheim, Liebenburg, Germany
15Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
16Departament Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), CIBERSAM, Universitat de Barcelona, Barcelona, Spain
17Department of Psychiatry, University of Münster, Münster, Germany
18Mood Disorders Unit, Department of Psychiatry, HUG - Geneva University Hospitals, Geneva, Switzerland
19Department of Molecular Medicine and Surgery, Karolinska Institutet and The Centre for Psychiatric Research, Stockholm, Sweden
20Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
21Discipline of Psychiatry, Royal Adelaide Hospital, Adelaide School of Medical Schooline, The University of Adelaide, Adelaide, SA, Australia
22Department of Psychiatry II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, Germany
23INSERM UMR-S 1144 - Université Paris Diderot, Pôle de Psychiatrie, AP-HP, Groupe Hospitalier Lariboisière-F. Widal, Paris, France
24Bipolar Disorders Program, Institute of Neurosciences, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
25Medical University of Graz, Graz, Austria
26Department of Psychiatry, University of California San Diego, San Diego, CA, USA
27Mayo Clinic, Rochester, MN, USA
28Mood Disorders Program, McGill University Health Centre, Montreal, QC, Canada
29Mental Health Program, IMIM (Hospital del Mar Medical Research Institute), CIBERSAM Barcelona, Catolonia, Spain
30Laboratory of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
31Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
32Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
33 AMEOS Clinical Center Hildesheim, Hildesheim, Germany
34 Department of Psychiatry and Psychotherapy, Neuropsychology & Interventional Neuropsychiatry, University of Tübingen, Tübingen, Germany
35 Karl-Jaspers Clinic, European Medical School Oldenburg-Groningen, Oldenburg, Germany
36 Department of Psychiatry, Psychotherapy and Psychosomatics, Clinical Center Wilhelmshaven, Wilhelmshaven, Germany
37 Neuroscience Research Australia, Sydney, NSW, Australia
38 School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
39 CH Ch Perrens, Bordeaux, France
40 Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania
41 INSERM U955 Equipe 15 - Psychiatrie Genetique, Hopital Henri Mondor, Creteil, Cedex, France
42 Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
43 Service de Psychiatrie et Psychologie Clinique, Centre Psychothérapique de Nancy - Université de Lorraine, Nancy, France
44 Human Genetics Branch, Section on Genetic Basis of Mood and Anxiety Disorders, National Institutes of Health, Bethesda, MD, USA
45 Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
46 Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
47 Asklepios Specialized Hospital, Göttingen, Germany
48 Hospital Neunkirchen, Neunkirchen, Germany
49 Department of Psychiatry and Psychotherapy, Agaplesion Diakonieklinikum, Rotenburg, Germany
50 Gothenburg University, Sahlgrenska Academy, Gothenburg, Sweden
51 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
52 Assistance Publique-Hôpitaux de Paris, Hôpital Albert Chenevier - Henri Mondor, Pôle de Psychiatrie, Créteil, France
53 Department of Pharmacy, VA San Diego Healthcare System, San Diego, CA, USA
54 Department of Psychiatry, Campania University L. Vanvitelli, Naples, Italy
55 Section of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
56 Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
57 Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
58 Lindner Center of HOPE, Research Institute, Mason, OH, USA
59 School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
60 Black Dog Institute, Prince of Wales Hospital, Sydney, NSW, Australia
61 Unitat d’Antropologia (Dp. Biologia Animal), Department of Biologia Animal, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, CIBERSAM, Barcelona, Spain
62 Neurosciences Section, Department of Medicine and Surgery, University of Salerno, Salerno, Italy
63 National Institute of Mental Health, Kecany, Czech Republic
64 Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
65 Department of Psychiatry, Karolinska Institutet, Stockholm, Sweden
66 Psychiatry, University of Iowa, Iowa City, IA, USA
67 Department of Psychiatry, Klinikum Bremen-Ost, Bremen, Germany
68 Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
69 AMEOS Clinical Center Osnabrück, Osnabrück, Germany
70 Department of Psychiatry and Psychotherapy, Bezirkskrankenhaus Augsburg, Augsburg, Germany
71 Sigmund Freud University, Vienna, Austria
72 Bipolar Zentrum, Wiener Neustadt, Austria
73 ASKLEPIOS Specialized Hospital Tiefenbrunn, Rosdorf, Germany
74 Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School Brandenburg, Neuruppin, Germany
75 Psychiatric Hospital Lüneburg, Lüneburg, Germany
76 Department of Psychiatry, University of Perugia, Perugia, Italy
77 Douglas Hospital, Verdun, QC, Canada
78 Clinic for Psychiatry and Psychotherapy, Clinical Center Werra-Meißner, Eschwege, Germany
INTRODUCTION

Bipolar disorder (BD) is a multifactorial disorder characterized by recurrent episodes of elevated and depressed mood. According to heritability estimates, genetic factors explain 60%-80% of the variance in this disorder and recent association studies have shown that a significant proportion of its genetic liability can be attributed to common variation. Despite this relatively robust genetic component, the phenotypic and genetic heterogeneity of this mental disorder has hampered our understanding of the underlying biological mechanisms.

Objectives: Bipolar disorder (BD) with early disease onset is associated with an unfavorable clinical outcome and constitutes a clinically and biologically homogenous subgroup within the heterogeneous BD spectrum. Previous studies have found an accumulation of early age at onset (AAO) in BD families and have therefore hypothesized that there is a larger genetic contribution to the early-onset cases than to late onset BD. To investigate the genetic background of this subphenotype, we evaluated whether an increased polygenic burden of BD- and schizophrenia (SCZ)-associated risk variants is associated with an earlier AAO in BD patients.

Methods: A total of 1995 BD type 1 patients from the Consortium of Lithium Genetics (ConLiGen), PsyCourse and Bonn-Mannheim samples were genotyped and their BD and SCZ polygenic risk scores (PRSs) were calculated using the summary statistics of the Psychiatric Genomics Consortium as a training data set. AAO was either separated into onset groups of clinical interest (childhood and adolescence \[≤18 \text{ years}\] vs adulthood \[>18 \text{ years}\]) or considered as a continuous measure. The associations between BD- and SCZ-PRSs and AAO were evaluated with regression models.

Results: BD- and SCZ-PRSs were not significantly associated with age at disease onset. Results remained the same when analyses were stratified by site of recruitment.

Conclusions: The current study is the largest conducted so far to investigate the association between the cumulative BD and SCZ polygenic risk and AAO in BD patients. The reported negative results suggest that such a polygenic influence, if there is any, is not large, and highlight the importance of conducting further, larger scale studies to obtain more information on the genetic architecture of this clinically relevant phenotype.

KEYWORDS

age at onset, bipolar disorder, early onset, polygenic risk score, schizophrenia
Studies on breast cancer, colon cancer, and Alzheimer's disease have provided evidence that identifying subphenotypes underlying the clinical diagnosis can assist with patient stratification. This approach, of narrowing down the molecular heterogeneity of these complex and polygenic disorders, holds promise for the identification of the genetic factors involved.5,6 In BD, the presence and severity of psychotic symptoms, first episode polarity, response to lithium, functional impairments, and age at onset (AAO) are considered as promising phenotypes for the identification of putatively biologically homogenous disease-subgroups.7,8 The recent identification of novel lithium response-associated single nucleotide polymorphisms (SNPs) by the Consortium of Lithium Genetics (ConLiGen) and Song et al. underline the potential of this approach in BD and call for further analyses on similar well-defined subphenotypes.9,10

Clinical studies have shown that early-onset BD (onset prior to 18 years of age) is more severe and homogeneous than other forms of BD, and thus it is one of the most frequently examined subphenotype candidates. This subgroup is associated with a higher recurrence rate of mood episodes, higher rates of psychotic symptoms and of comorbid conditions and more frequent suicide attempts and neurocognitive impairments.8,11 Moreover, it has also been hypothesized, mostly based on the observations of family and heritability studies, that early-onset BD is genetically different from the late-onset subgroup.12,13 However, candidate gene studies and genome-wide association studies (GWASs) have failed to unambiguously identify genetic markers specifically associated with early-onset forms of BD. This may be in part due to limited statistical power.14,15

Current evidence derived from GWASs, in a wide range of psychiatric (and non-psychiatric) complex phenotypes, indicates that the genetic architecture of psychiatric disorders is characterized by a marked polygenicity.16-18 Therefore, estimating the genetic risk burden by employing polygenic risk scores (PRSs) holds promise for a better understanding of the genetic basis of the phenotype and its genetic overlap with other phenotypes/disorders.18,19 For instance, genome-wide complex trait analysis has shown that 79% of common variants are shared between BD and schizophrenia (SCZ) and that SCZ-PRSs are good predictors of BD case-control status.2,18 However, a single study thus far has investigated the association between the cumulative genomic risk for BD (BD-PRS) and disease onset and found no significant results.20 The association with SCZ-PRS has not been tested yet.

Given the limited knowledge of the genetic structure of AAO in BD, the aim of the current study was to use PRSs to investigate whether earlier disease onset is associated with a higher genetic liability to BD and/or SCZ in 1995 BD type 1 patients.

2 | METHODS

2.1 | Subjects

The phenotypic and genetic data of patients with a lifetime diagnosis of DSM-III or DSM-IV BD type 1 were assembled from the ConLiGen, Bonn-Mannheim (BoMa) and PsyCourse samples. Patients included in this analysis were recruited at 21 sites in 12 countries across North America (Canada and the USA), Europe (Austria, Czech Republic, Italy, France, Germany, Poland, Romania, Spain and Sweden) and Australia. Their AAO was defined as the age at the first DSM-III or DSM-IV mood episode (depressive, manic or hypomanic) based on the information obtained at the diagnostic interview and from medical records. Ascertainment and diagnostic assessment for the ConLiGen study have been described previously.19 Patients in the BoMa sample were recruited from consecutive hospital admissions at the Central Institute of Mental Health, Mannheim, and the Department of Psychiatry, University of Bonn, Bonn, Germany.21 Only patients not part of the PGC-BD1 analyses were included in the current study.22 PsyCourse is an ongoing, multicenter study conducted at a network of clinical sites across Germany and Austria (http://psycourse.de).23 The phenotypic characteristics of the patients recruited at the individual sites and the respective sample sizes are presented in Supporting Information Table S1. The reported sample sizes represent those available after quality control (exclusion of patients with no information on age [N = 59], gender [N = 2], or AAO, or having improbable AAO data [N = 162]).

This study was conducted in accordance with the ethical principles of the Declaration of Helsinki. Written informed consent was obtained from all participants aged ≥ 18 years, and written assent and parental permission were obtained from children aged < 18 years and their parent/legal guardian before participation in the study. Approval from each institution’s ethics committees was obtained.

2.2 | Genotyping and imputation

DNA was extracted from peripheral blood and samples were genotyped at the National Institute of Mental Health (Bethesda, MD, USA) or Broad Institute (ConLiGen) and Life & Brain Center at the University of Bonn (ConLiGen, PsyCourse and BoMa). The genotyping, quality control and imputation pipelines used for the samples are described in Hou et al., Andlauer et al. and Mühlheisen et al. in more detail.21,24 Briefly, the subsamples were genotyped on Affymetrix (Affymetrix 6.0, Affymetrix Inc., Santa Clara, CA, USA) or Illumina (Human610/660W, HumanOmniExpress, HumanOmni1-Quad or HumanOmni2.5, Illumina Inc., San Diego, CA, USA) SNP arrays. Participants from the PsyCourse and BoMa cohorts were genotyped on Illumina (Human610/660W or Infinium PsychArray) SNP arrays. Quality control and imputation were carried out separately for the distinct SNP arrays. Genotype imputation was performed using the 1000 Genomes reference panel using either SHAPEIT2 and IMPUTE2 (BoMa and PsyCourse) or SHAPEIT2 and minimac (ConLiGen).25,26 The Caucasian-European origin of the samples was confirmed by principal component analysis of the genetic relationship matrix.

2.3 | Polygenic scoring

Polygenic scores were generated using PLINK v.1.9, by applying the method used by the International Schizophrenia Consortium, as described in Purcell et al.18,27 First, the SNPs shared between either
the Psychiatric Genomics Consortiums SCZ or BD GWAS summary statistics data sets (PGC SCZ2 and PGC BD) and a merged data set of the samples included in this study were identified, resulting in N = 92 703 (SCZ) and N = 101 007 (BD) autosomal SNPs pruned for minimizing pair-wise linkage disequilibrium. This harmonized set of PGC SCZ2 and PGC BD summary data was then used as the source of information on the allelic risk variants and their associated odds ratios (ORs). PRSs were calculated by multiplying the imputation probability for each risk allele by the log(OR) for each genetic variant in PGC SCZ2 and PGC BD. The resulting values were summed using all SNPs (P-value threshold, \(P = 1 \)), leading to an estimate of the SCZ or BD polygenic risk burden of each individual.

2.4 | Statistical analysis

AAO was analyzed both as a continuous and as a categorical measure; the association between AAO and either BD- or SCZ-PRS was evaluated using linear and logistic regression models, respectively. The AAO subgroups were initially identified to represent the developmental stages, namely childhood (≤12 years), adolescence (13-18 years), or adulthood (>18 years). However, because of highly unbalanced sample sizes (N = 93, 555 and 1347, respectively), the childhood and adolescence groups were collapsed into a single early-onset group (≤18 years) and compared to the late-onset cases (>18 years) in the categorical analysis. Sex, age at interview, recruitment site, genotyping chip, 10 ancestry principal components and the applied imputation strategy were taken into consideration as covariates. Backward stepwise regression model selection indicated that the 1st, 4th, 6th and 8th ancestry principal components, site, genotyping chip, age at interview and imputation strategy were significantly associated with the continuous AAO. The 4th, 6th, 7th and 10th ancestry principal components, gender, site, genotyping chip, age at interview and imputation strategy were associated with the categorical AAO measure. Therefore, these variables were controlled for in the respective analyses. The proportion of variance explained (\(R^2 \)) was calculated by subtracting the effects of the covariates from the full model including PRS. The residuals of the linear regression models were normally distributed. The significance threshold was corrected for testing two PRSs to \(\alpha = 0.025 \). All analyses were performed in the statistical computing environment R 3.4.2 with the packages car 2.1-5, fmsb 0.6.1 and nnet 7.3-12.

3 | RESULTS

We analyzed a sample of 1995 BD type 1 patients (55.1% female). The mean (± SD) AAO across all centers was 24.83 (±10.59) years and the AAO ranged between 6 and 67 years. The AAO was not different between the sexes (mean ± SD: male patients, 24.96 ± 10.720 years; female patients, 24.73 ± 10.32 years; \(P = .623 \)).

No significant association was observed between continuous AAO and BD-PRS (\(P = .376, t = -0.086, \text{standardized } \beta = -0.000065, R^2 \text{ change} = -.01\% \)) or SCZ-PRS (\(P = .99, t = -0.01, \text{standardized } \beta = -1.322 \times 10^{-6}, R^2 \text{ change} = -.04\% \)). Full results, including \(P \)-values, \(t \)-values and \(R^2 \)-change are summarized in Supporting Information Tables S2-S3.

Furthermore, no significant group difference was observed when AAO was considered as a dichotomous variable and BD- and SCZ-PRSs of the early-onset (≤18 years) and late-onset (>18 years) AAO groups were compared using binary logistic regression (\(P = .16 \), Nagelkerke's \(R^2 \)-change = .105%, OR = 1.01, 95% confidence interval (CI): 0.99-1.03, and \(P = .88 \), Nagelkerke's \(R^2 \)-change = .002%, OR = 1.0, 95% CI: 0.96-1.03, respectively). Full results, including correlation coefficients, ORs, 95% CIs and \(P \)-values, are summarized in Supporting Information Tables S4-S5.

Patients recruited in the USA had a significantly lower AAO compared to those from the European, Australian and Canadian sites (mean ± SD: 19.25 ± 9.55 and 25.92 ± 10.33 years, respectively, \(P < 2.25 \times 10^{-26} \)). To ensure that the association between AAO and BD- and SCZ-PRSs was not masked by these geographic differences in AAO distribution, which are well known in the literature, the same linear regressions with initial backward feature selection steps were repeated using only the USA site or the other sites. These additional analyses, similarly to the results for the full data set, found no association with the phenotype of interest. Full results, including \(P \)-values, \(t \)-values and \(R^2 \)-change, are summarized in Supporting Information Tables S6-S9.

4 | DISCUSSION

Although early onset of BD has long been hypothesized to constitute a genetically more homogenous subcategory within the rather heterogeneous BD spectrum, the search for phenotype-specific genetic variants has not yet been successful. Being a highly heritable disorder with 43.2% of its genetic liability being explained by common variants of small effect, the development of BD, similarly to that of other complex polygenic conditions, can be modeled within the framework of a liability-threshold model. Individuals with more BD- or SCZ-associated risk alleles can be expected to cross the liability threshold earlier and thus have an earlier disease onset. Previous family studies support this hypothesis, as affected siblings of patients with early AAO were reported to be four times more likely to also have an early AAO, and children of couples with a positive history of affective disorders had a higher risk for an earlier AAO. However, a study conducted on 255 patients found no difference between the BD-PRSs of the different AAO groups.

Evidence shows that the power to detect the genetic underpinnings of complex phenotypes increases with increasing sample sizes. Therefore, we assumed that, using an order of magnitude larger sample than in Aminoff et al., we might find an association between AAO and BD and SCZ. Based on the negative findings of our study, one can hypothesize that instead of being largely influenced by SNPs identified in GWASs of BD and SCZ, age at disease onset is rather influenced by other genetic, environmental or epigenetic risk factors. A further possibility is that BD- and SCZ-PRSs explain only a small proportion of the AAO variance and/or the genetics of AAO in BD is more heterogeneous.
than previously assumed and therefore the current study lacked the statistical power to detect an underlying association.

5 | SUMMARY

To our knowledge, this is the largest study thus far to investigate the association between AAO in BD and BD- and SCZ-PRS. The results show, in our sample of 1995 BD patients, that the polygenic burden associated with BD or SCZ risk does not influence the age at illness onset in BD. These negative results highlight the need to conduct further larger scale studies, also including environmental information, to disentangle the genetic architecture of early-onset BD.

ACKNOWLEDGEMENTS

The authors are grateful to all the study participants without whom this research would not have been possible. We thank the Schizophrenia and Bipolar Disorder Working Groups of the Psychiatric Genomics Consortium (PGC) for providing access to the relevant data.

CONFLICTS OF INTEREST

The authors declare no conflict of interest. The funding agencies had no role in the design of the study; in the collection, analyses, or interpretation of data. Neither were they involved in the writing of the manuscript, or in the decision to publish the results.

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

https://doi.org/10.1111/bdi.12659