Conversion of Dinitrogen to Acetonitrile at Ambient Conditions

Isabel Klopsch, Markus Kinauer, Markus Finger, Christian Würtele, and Sven Schneider*

Abstract: About 20% of the ammonia production provides the chemical feedstock for nitrogen containing chemicals. However, while synthetic nitrogen fixation at ambient conditions faced some groundbreaking contributions in recent years, progress for the direct conversion of N₂ to organic products remains limited and catalytic reactions are unknown. Here, the rhenium mediated synthesis of acetonitrile using dinitrogen and ethyl triflate as reagents is presented. A synthetic cycle in three reaction steps with high individual isolated yields and recovery of the rhenium pincer starting complex is shown. The cycle comprises alkylation of a nitride that arises from N₂ splitting and subsequent imido ligand centered oxidation to nitrile via a 1-azavinylidenec (ketimido) intermediate. Different synthetic strategies for intra- and intermolecular imido ligand oxidation and associated metal reduction were evaluated that rely on simple proton, electron and hydrogen atom transfer steps.

Synthetic nitrogen fixation at ambient conditions underwent tremendous advances in the past years.¹ Several molecular catalysts for NH₃-formation are known.² Turn-over numbers over 60 currently define the most efficient system.³ Similarly, catalytic N₂ silylation with large excess of ClSiMe₃ and alkali reductants saw some remarkable progress, but remains mechanistically less well defined.⁴ While the lion’s share of ammonia is used for fertilizers, around 20% serves as feedstock for chemical synthesis, e.g. of amines, nitro compounds, or nitriles. However, catalysts for the direct introduction of N₂ into organic products remain elusive and even stoichiometric systems are scarce. Pioneering work demonstrated transformations of coordinated N₂, such as 4-electron reductions to hydrazido ligands with C₂ electrophiles.⁵ But hydrazines apparently are less promising synthetic targets, due to the weak N–N single bond. More recent work evaluated pathways for E–N (E = C, Si, B) bond formation accompanied by full N₂ splitting, e.g. with heterocummuinienes,⁶ CO₂,⁷ silyl,⁸ alkyl,⁹ or boryl groups.¹⁰

According to thermochemical arguments nitriles are attractive targets as the formation of strong C–N bonds (ΔH(HCN=N) = 937 kJ mol⁻¹) facilitates offsetting the large N₂ bond energy (941 kJ mol⁻¹).¹¹ Cummins and co-workers reported elegant synthetic cycles for the 6-electron transformation of N₂ to nitriles mediated by Mo and Nb complexes.¹² The protocols start with initial dinitrogen splitting,¹³ followed by nitride acylation with silyltriflate and acyl chloride.¹⁴ Subsequent stepwise 3-electron reduction requires further silyltriflate and Lewis acid (SnCl₂ or ZnCl₂) for oxygen removal with nitride release in up to 38% yield over all 5 steps.¹⁵ In this synthetic scheme re-reduction of the (formal) catalyst is a purely metal centered process (Scheme 1a).

This work inspired us to evaluate new ways of N₂ to nitrile conversion, which rely on intramolecular electron transfer: The interconversion of imido and nitrile ligands via 1-azavinylidenes (or ketimides) by simple double de/protonation (Scheme 1b) was previously reported, but not applied to N₂ fixation.¹⁶ Importantly, both deprotonation step are associated with formal metal/ligand 2-electron redox steps offering new strategies for metal reduction within a (pseudo)catalytic N₂ functionalization cycle (Schemes 1b/c). Following these strategies, we here report several routes for the conversion of N₂ to acetonitrile via rhenium mediated N₂ splitting, nitride acylation and ligand oxidation leading up to a synthetic cycle in three steps in over 50% yield per cycle.

We recently reported dinitrogen splitting and alkylation.¹⁷

Scheme 1. Schematic pathways of nitrile synthesis after N₂-splitting and functionalization: Through nitride acylation established by Cummins et al. (a)¹² vs. through nitride alkylation (b and c) evaluated in the present work.

Scheme 2. Rhenium mediated dinitrogen splitting and alkylation.¹⁷
geometry with the imide in apical position as confirmed by X-ray diffraction for 3a.15

Ethylimide 3b is deprotonated quantitatively with KN(SiMe\textsubscript{3})\textsubscript{2} giving the red-brown 1-azavinylidene rhenium(III) complex [Re(N=C\textsubscript{2}CH\textsubscript{2}Cl)\textsubscript{2}(PNP)] (4) (Scheme 3).16 The synthesis of 4 can also be carried out as a one-pot reaction directly from 2 by successive ethylation and deprotonation in benzene with almost quantitative spectroscopic and over 80\% isolated yield.

Spectroscopic characterization of complex 4 indicates the presence of two isomers in about 60:40 ratio with diagnostic 13C and 15N NMR signals for the azavinylidene ligands, respectively.16 This observation is in line with the formation of two stereoisomers as a result of hindered 1-azavinylidene rotation about the Re=N and N=C double bonds due to strong Re–N back bonding.13 The N=C double bond stretching vibration of the ketimide can be assigned to a weak band in the vibrational spectrum at 1594 cm-1, which shifts by 22 cm-1 upon 15N-labelling.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Scheme_3.png}
\caption{Synthesis of acetonitrile upon double deprotonation of N-derived ethylimide 3b.}
\end{figure}

The structural assignment of 4 is confirmed by single crystal X-ray diffraction (Figure 1a). The coordination geometry around the rhenium ion is close to that in the methyl imide 3a15 and all N–Re–N and N–Re–Cl bond angles of the two structures are the same within 5\%.

However, the almost linear Re–N–C moiety of 4 exhibits considerably longer Re–N (∆d = +0.12 Å) and shorter C–N (∆d = -0.17 Å) bonds than 3a, in line with the changes in Re–N and N=C bond orders and with the only other structurally characterized rhenium 1-azavinylidene complex reported in the literature.17

The ketimido complex 4 can be further deprotonated if the resulting rhenium(I) ion is stabilized by strong π-acceptor ligands. For example, the reaction of 4 with KN(SiMe\textsubscript{3})\textsubscript{2} and tert-butylisonitrile (2 eq) gives the bis-isonitrile 1 complex [Re(CN\textsubscript{2}Bu\textsubscript{3})(PNP)] (5) in almost quantitative yield with concomitant release of acetonitrile (Scheme 3).16 While 5 exhibits C\textsubscript{2v} symmetry in solution on the NMR time-scale, in the crystal (Figure 1b) this compound features one strongly bent isonitrile ligand (C\textsubscript{26}–N\textsubscript{3}–C\textsubscript{27}: 134.2(4)\textdegree) while the other isonitrile remains almost linear (C\textsubscript{21}–N\textsubscript{1}–C\textsubscript{22}: 168.7(5)\textdegree). Such strong bending is rare and indicates an unusually high degree of Re→C π-back bonding tantamount to the electron rich nature of the [Re11(PNP)] fragment.18 Accordingly, the C\textsubscript{26}–N\textsubscript{3} bond (1.222(5) Å) of the bent isonitrile is considerably longer as in the linear isonitrile moiety (C\textsubscript{21}–N\textsubscript{2}: 1.181(6) Å). The electronic asymmetry is also resolved in the IR spectrum, which features bands in two regions at around 1960 cm-1 and 1760 cm-1, respectively, assignable to the linear and bent isonitriles.16 The low-energy stretching mode reflects the strongly reduced character of the bent isonitrile. Both bands are split into two, respectively, which can be rationalized with conformational isomers, as was previously reported for complexes with mixed linear/bent isonitriles.19

Hence, intramolecular 4-electron charge transfer from the ethylimido ligand to the metal by double deprotonation (Scheme 1b) is in fact feasible if the electron rich [Re(PNP)] fragment is trapped by π-acceptor ligands such as isonitriles. However, regeneration of parent 1 on this route was unsuccessful, so far. Therefore, conversion of 4 by oxidative functionalization of the azavinylidene ligand (Figure 1c) was examined. Cyclic voltammetry (CV) reveals reversible oxidation of 4 at low potential (Ε\textsubscript{o} = -0.58 V) and an irreversible oxidation wave beyond +0.6 V.16 Accordingly, chemical oxidation with one equivalent of AgPF\textsubscript{6} in CH\textsubscript{2}Cl\textsubscript{2} results in the formation of a red, paramagnetic product.16 While this compound could not be isolated due to slow degradation, in situ hydrogen atom transfer (HAT) with 2,4,6-tri-tert-butylphenoxane radical (after preciding oxidation of 4 with AgOTf) gives vinilimidyl complex [Re(N–C\textsubscript{2}H\textsubscript{3}–CH\textsubscript{3})(PNP)]+ (6) in spectroscopic yields beyond 80\% (Scheme 4).16 The vinyl substituent in 6 is unequivocally identified by its 1H NMR signature,19 while the signals for the pincer ligand are almost identical with imido and ketimido complexes 3a/b and 4. Notably, without preceding oxidation of 4 (with AgPF\textsubscript{6} or AgOTf) no reaction is observed with 2,4,6-tri-tert-butylphenoxane radical.
Hence, formal hydride abstraction from 4 by stepwise 1-electron oxidation and subsequent HAT favors the formation of an unusual rhenium(V) vinyl imide over the rhenium(III) acetonitrile tautomer. This observation again emphasizes the distinct tendency of the electron rich [ReCl(PNP)] core for M→N back bonding. However, the nitrile isomer [Re(NCMe)Cl(PNP)]\(^-\) was computed to exhibit a triplet ground state that lies only around \(\Delta G^0 = +16 \text{ kJ mol}^{-1}\) higher than 6.\(^{16}\) This result suggests that acetonitrile elimination might be accessible on the rhenium(III) stage by trapping of the \([\text{ReCl}(\text{PNP})]^-\) fragment. Accordingly, the reaction of 6 with LiCl, crown ether (12-crown-4) and stoichiometric amounts of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) results in formation of parent 1 and acetonitrile (Scheme 4), closing a full synthetic cycle.\(^{16}\) Without DBU no reaction is observed and the non-nucleophilic base presumably facilitates proton transfer for vinyl group tautomerization. Albeit the spectroscopic yield in 1 and MeCN is only around 30% (internal \(^1H\)-NMR standard naphthalene) besides several other unidentified products, these results define the requirements for oxidative acetonitrile release from 4: A 2-electron oxidant and a base for formal hydride removal and a chloride source to stabilize rhenium(III).

To raise the overall yield of the synthetic cycle, several reagents were screened that fulfill the aforementioned requirements. For example, 4 reacts with a mixture of CuCl\(_2\) (2 equiv.) and DBU (1 equiv.) to give 1 in around 20% spectroscopic yield (\(^{31}P\) NMR). However, best results were obtained with \(N\)-chlorosuccinimide (NCS). Reaction of 4 with 2 equiv. NCS (Scheme 5) gives free acetonitrile in over 90% yield by \(^1H\) NMR (internal standard naphthalene)\(^{16}\). Besides that, rhenium(IV) complex \([\text{ReCl}(\text{PNP})]\) (7) is obtained almost quantitatively upon comparison of the \(^1H\) NMR (\(\Delta \delta (\text{Bu}) = 10.7 \text{ ppm}\)) and UV-vis spectra with an authentic sample. Complex 7 was independently prepared by oxidation of 1 with 1 equiv. NCS and fully characterized.\(^{16}\) Derivation of the molecular structure by single-crystal X-ray diffraction (Figure 1c) reveals octahedrally coordinated rhenium with some distortion mainly arising from the pincer bite angle. The magnetic moment in solution at room temperature from Evans’ method (1.5 \(\mu_\text{B}\)) is in agreement with a \(d^0\) low-spin configuration resulting from the strong pincer \(\pi\)-donation and some orbital contribution to the magnetic moment that leads to reduction of the magnetic moment with respect to the spin-only value. The facile synthesis of rhenium(IV) complex 7 from parent rhenium(III) dichloride 1 and NCS (1 equiv.)\(^{16}\) indicates that 1 could in fact be an intermediate in the oxidation of 4 with NCS.

Finally, the synthetic cycle could be closed by reduction of 7 with Na/Hg (2 equiv.) under dinitrogen (1 bar) at room temperature (Scheme 5).\(^{16}\) The nitride 2 is obtained in over 70% spectroscopic yield. This full cycle of \(\text{N}_2\) conversion to acetonitrile was further confirmed with a \(^{15}\text{N}\)-labeled sample producing \(^{15}\text{N}\)-labeled acetonitrile. The reaction of 7 with only one equivalent reductant (CoCu\(_2\)) under argon quantitatively gives complex 1 by \(^1H\) and \(^31\text{P}\) NMR spectroscopy,\(^{16}\) indicating that \(2\)-splitting starting from 7 might also pass through rhenium(III) complex 1 as an intermediate.

In summary, a new route for the pseudo-catalytic synthesis of acetonitrile is presented directly utilizing \(\text{N}_2\) and ethyl triflate as \(N\)- and \(C\)-sources, respectively. The best synthetic cycle is comprised of three simple reaction steps with 52% overall yield. The present results describe a new strategy for dinitrogen functionalization to valuable chemicals beyond ammonia. Besides the thermochemical attractiveness to form \(C-N\) triple bonds after \(N_2\) splitting, this work also offers mechanistic implications regarding the restoration of low-valent rhenium after \(N_2\)-splitting. We demonstrate that the alkylimide to nitrile ligand oxidation can be partially coupled with metal re-reduction. Such proton-coupled metal-ligand redox processes are therefore of particular relevance for future efforts to design truly (electro-)catalytic variants of \(N_2\) transformation to organic compounds.

Acknowledgements

The authors are grateful to the European Research Council (ERC Grant Agreement 646747) for funding.

Keywords: small molecule activation • nitrogen fixation • rhenium • pincer ligands • acetonitrile
[16] See Supporting Information for synthetic, spectroscopic, crystallographic and computational details.
If it broke, fix it: In contrast to synthetic NH$_3$ synthesis, the catalytic conversion of N$_2$ with concomitant C–N bond formation to organic products remains unknown and stoichiometric examples are scarce. Here, several routes for the rhenium mediated synthesis of acetonitrile at ambient conditions via N$_2$-splitting and alkylation are presented, leading up to a full synthetic cycle in three steps with >50% overall yield.