Photochemistry between a ruthenium(II) pyridylimidazole complex and benzoquinone: simple electron transfer versus proton-coupled electron transfer†

Roland Hönes,a Martin Kuss-Petermanna and Oliver S. Wenger*b

A ruthenium(II) complex with two 4,4′-bis(trifluoromethyl)-2,2′-bipyridine chelates and a 2-(2′-pyridyl)-imidazole ligand was synthesized and characterized by electrochemical and optical spectroscopic means. The respective complex has the potential to act as a combined electron–proton donor when promoted to its long-lived 7MLCT excited state with visible light. The possibility of proton-coupled electron transfer (PCET) between the ruthenium(II) complex and 1,4-benzoquinone as an electron/proton acceptor was explored by steady-state and time-resolved luminescence spectroscopy, as well as by transient absorption spectroscopy in the nanosecond time regime. Excited-state deactivation is found to occur predominantly via simple oxidative quenching involving no proton motion, but a minor fraction of the photoexcited complex appears to react via PCET since there is spectral evidence for semiquinone as a photoproduct. Presumably, PCET is not kinetically competitive with simple electron transfer because the latter process is sufficiently exergonic and because there is little thermodynamic benefit from coupling proton transfer to the photoinduced electron transfer.

Introduction

The photophysical properties of ruthenium(II) complexes with 2,2′-bimidazole, 2,2′-bibenzimidazole, 2-(2′-pyridyl)imidazole and 2-(2′-pyridyl)benzimidazole ligands were first explored more than 30 years ago by Haga.1–6 An important finding from this work was that the redox chemistry and the acid–base chemistry of these complexes are intimately coupled to each other, a fact which was further explored in related iron(II) complexes by Thomas and coworkers.7–9 To name just one particularly spectacular result, it was found that four-fold deprotonation of a homoleptic iron(II) complex with two terdentate 2,6-(benzimidazol-2′-yl)pyridine ligands shifted the electrochemical potential for oxidation of Fe(II) to Fe(III) by nearly 1.5 V.7 From a photochemistry point of view there is special interest in ruthenium(II) complexes with long-lived excited states which can undergo coupled redox and acid–base chemistry. Indeed, as is evident from the review by Vos there exist a great many of d6 metal complexes which fall into this category.10 This family of photoactive complexes is by far not restricted to the above-mentioned ligands derived from imidazole, but it further encompasses carboxyl-, hydroxyl-, and amidinium-substituted 2,2′-bipyridine or 1,10-phenanthroline ligands, just to name a few.11–16

The increasing interest in proton-coupled electron transfer (PCET) in recent years stimulated further research on metal complexes which can potentially act as combined electron–proton donors or combined electron–proton acceptors when irradiated with visible light.18 Ultimately, such photochemistry may be of interest in the context of artificial photosynthesis,19 but the primary goal of many current studies is quite simply to elucidate the reaction mechanisms of excited-state PCET. An important question is for example whether electrons and protons are transferred from one substrate to the other in individual (consecutive) reaction steps or whether they are transferred in a concerted manner.20,21 In this context, ruthenium(II) complexes with 2,2′-bipyrazine (Scheme 1a) ligands and related rhenium(II) complexes have provided valuable insight recently: we and others were able to show that concerted proton–electron transfer (CPET) from phenol molecules to photexcited complexes of these types is indeed possible under favorable circumstances,15,17,22–24 manifesting in...
hydrogen/deuterium kinetic isotope effects of up to 10. In these earlier studies, ruthenium(II) 2,2'-bipyrazine complexes acted as combined electron–proton acceptors upon photoexcitation. Here, we report our findings from a study in which we explored the potential of the ruthenium(II) complex from Scheme 1b to act as a combined electron–proton donor in its long-lived excited state. Benzoquinone was chosen as a reaction partner because it is well known as a combined electron–proton acceptor.

We have previously explored the excited-state PCET chemistry of an iridium(III) complex with a 2,2'-bimidazole ligand but the results were less clear than anticipated, *inter alia* because of the fact that two deprotonatable sites were present and because transient absorption spectroscopy was not particularly helpful for following the redox chemistry of the iridium(III) center.25,26 In this sense ruthenium(II) complex 1 from Scheme 1b with only one deprotonatable site represents a significant advance. Haga and Tsunemitsu considered the possibility of PCET between a related ruthenium(II) complex and pyridine molecules already in 1989,18 while Kramer and coworkers used a deprotonated ruthenium(II) pyridylbenzimidazole complex as a combined electron–proton acceptor for PCET investigations.18,27 We are unaware of prior experimental studies of excited-state PCET using complexes with imidazole-derived ligands as combined electron–proton donors.

Experimental section

Synthesis of the ligands and of the [Ru(4,4'-bis(trifluoromethyl)-2,2'-bipyridine)2Cl2] precursor complex occurred following previously published protocols as described in the Results and discussion section.28–30 A solution of [Ru(4,4'-bis(trifluoromethyl)-2,2'-bipyridine)2Cl2] (71 mg, 9.4 × 10−5 mol) in a 1:1 (v:v) mixture of ethanol and water (10 mL) was refluxed for 30 min until the precursor complex was completely dissolved. Subsequently, 2-(2'-pyridyl)imidazole was added (17 mg, 1.1 × 10−4 mol), and the mixture was refluxed for 3 h. Then, a few drops (~5) of concentrated aqueous HCl were added, and the ethanol was removed on a rotary evaporator. The aqueous solution was filtered and a saturated aqueous solution of KPF6 was added. The precipitate was collected by filtration and washed with water and Et2O yielding 80 mg (76%) of the title compound as a dark-reddish black solid. The product which remained in the frit was recovered by rinsing with acetone. 1H-NMR (300 MHz, acetone-d6): δ (ppm) = 13.53 (sbr, 1 H), 9.45–9.39 (m, 4 H), 8.64 (d, J = 5.9 Hz, 1 H), 8.56 (d, J = 5.9 Hz, 2 H), 8.51 (d, J = 5.9 Hz, 1 H), 8.43 (d, J = 7.9 Hz, 1 H), 8.21 (td, J = 7.9 Hz, 1.4 Hz, 1 H), 8.03 (d, J = 5.6 Hz, 1 H), 8.00–7.94 (m, 2 H), 7.85 (dd, J = 6.0 Hz, 1.5 Hz, 1 H), 7.80 (dd, J = 6.0 Hz, 1.5 Hz, 1 H), 7.76 (d, J = 1.5 Hz, 1 H), 7.54 (ddd, J = 7.8 Hz, 5.6 Hz, 1.3 Hz, 1 H), 6.98 (d, J = 1.5 Hz, 1 H). MS (ESI) m/z: 415.5271. calc.: 415.5276. Anal. Caled for C33H33F23NiP2Ru-0.5(CH3)2CO: C, 35.00; H, 1.94; N, 8.53. Found: C, 35.14, H, 2.04; N, 8.20.

1H and 13C NMR spectra were measured on a Bruker B-ACS-120 instrument. Electrospray ionization mass spectroscopy was performed with a Finnigan MAT 95 spectrometer. Elemental analyses were performed with a Vario EL3 instrument.

Cyclic voltammetry was performed using a Versastat3-200 potentiostat from Princeton Applied Research and with a glassy carbon disk working electrode. Two separate silver wires served as counter- and reference electrodes, respectively. Prior to voltage sweeps at rates of 0.1 V s−1 the dried solvent was flushed with nitrogen; 0.1 M TBAPF6 served as a supporting electrolyte. UV-Vis spectra were measured on a Cary 300 instrument from Varian. Steady-state luminescence experiments were performed on a Fluorolog-3 apparatus from Horiba Jobin-Yvon. Luminescence lifetime and transient absorption experiments occurred on an LP920-KS spectrometer from Edinburgh Instruments equipped with an iCCD from Andor. The excitation source was the frequency-doubled output from a Quantel Brilliant b laser. For all optical spectroscopic experiments the samples were de-oxygenated *via* three subsequent freeze–pump–thaw cycles in home-built quartz cuvettes that were specifically designed for this purpose.

Results and discussion

Synthesis

The 4,4'-bis(trifluoromethyl)-2,2'-bipyridine ligand of complex 1 was synthesized from commercially available 2-chloro-4-(trifluoromethyl)pyridine in a homocoupling reaction using NiBr2(PPh3)2 as a catalyst as described previously.28 The 2-(2'-pyridyl)imidazole ligand was synthesized from 2-cyanopyridine as reported recently.30 Complexation followed the standard synthetic route,28,29 involving the synthesis of a Ru(4,4'-bis(trifluoromethyl)-2,2'-bipyridine)Cl2 precursor complex prior to ligation of the 2-(2'-pyridyl)imidazole ligand.

Absorption and luminescence spectroscopy

The solid line in Fig. 1a is the UV-Vis spectrum of complex 1 in a 1 : 1 (v:v) CH3CN–H2O solution at ambient temperature and pH 7 (concentration: 3 × 10−5 M). The lowest-energetic absorption band with a maximum near 490 nm is due to spin-
allowed metal-to-ligand charge transfer (MLCT) transitions between the ruthenium(II) \(t_{2g} \) orbitals (in the limiting case of octahedral symmetry) and the \(\pi^* \) orbitals of the bipyridine and pyridylimidazole ligands. The intense band at 300 nm is attributed to \(\pi-\pi^* \) transitions localized on 4,4′-bis(trifluoromethyl)-2,2′-bipyridine, in analogy to the bipyridine-localized bands in Ru(2,2′-bipyridine)\(_3\).\(^{23,31}\) The additional band at 360 nm has been observed previously in [Ru(2,2′-bipyridine)\(_2\)(2-2′-pyridyl-imidazole)]\(^+\) and was interpreted in terms of a ligand-to-ligand charge transfer (LLCT) transition.\(^{32}\)

When increasing the pH of the solution from 7 to 11.5 one observes spectral changes mainly in the MLCT region, and this is illustrated by a few exemplary spectra represented by the dashed lines in Fig. 1a. In alkaline solution the MLCT band shifts to longer wavelengths, in line with prior reports by Haga and others.\(^1\)\(^{4,6,32}\) and this is a direct consequence of the acidic character of the peripheral N \(-\mathrm{H} \) groups by 3 \(-\mathrm{H} \) units relative to the parent complex in its electronic ground state.

The solid trace in Fig. 2a is a luminescence spectrum of complex 1 in pH-neutral 1:1 (v:v) \(\mathrm{CH}_3\mathrm{CN}–\mathrm{H}_2\mathrm{O} \) obtained after photoexcitation at 470 nm at ambient temperature (concentration: \(6 \times 10^{-5} \) M). By analogy to related ruthenium(II) complexes with pyridylimidazole or biimidazole ligands this emission is assigned to \(^3\)MLCT luminescence.\(^2\) Compared to Ru(2,2′-bipyridine)\(_3\)\(^+\) the emission is red-shifted because the pyridylimidazole ligand is acting as a \(\pi \)-donor and thus increases the electron density at the metal center.\(^7\) The deprotonated form of pyridylimidazole is an even stronger \(\pi \)-donor, which explains the observed red-shift of the MLCT absorption (Fig. 1a) and, in consequence, the emission quenching (Fig. 2a). The result of a titration monitoring the emission maximum at 670 nm as a function of pH in 1:1 (v:v) \(\mathrm{CH}_3\mathrm{CN}–\mathrm{H}_2\mathrm{O} \) is shown in Fig. 2b. The inflection point of the titration curve is at \(\mathrm{pH}_i = 6.8 \pm 0.2 \). The true excited-state acid ionization constant (\(\mathrm{pK}_a^* \)) is obtained from \(\mathrm{pH}_i \) when taking into account the different excited-state lifetimes of the protonated (\(\tau_{\text{HB}} \)) and deprotonated forms (\(\tau_{\text{CN}} \)) of the complex.\(^2\)\(^,\)\(^33\) Using eqn (1) with \(\tau_{\text{HB}} = 160 \) ns and \(\tau_{\text{CN}} = 17 \pm 5 \) ns (Table 1) one obtains \(\mathrm{pK}_a^* = 7.8 \pm 2 \).

\[
\mathrm{pK}_a^* = \mathrm{pH}_i + \log(\tau_{\text{HB}}/\tau_{\text{CN}}) \tag{1}
\]

This analysis suggests that complex 1 is a somewhat weaker acid in its \(^3\)MLCT excited state than in its electronic ground state (Table 1). This contrasts the prior findings of Haga and Gray who had used unsubstituted bipyridines as ancillary ligands in ruthenium(II) pyridylimidazole complexes.\(^2\)\(^,\)\(^32\) Our result is particularly intriguing because our 4,4′-bis(trifluoromethyl)-2,2′-bipyridine ligand has energetically lower-lying \(\pi^* \) orbitals than unsubstituted 2,2′-bipyridine,\(^34\) and therefore one could expect complex 1 to be an even stronger photoacid than the complexes of Haga and Gray. However, the short excited-state lifetime of the deprotonated complex (\(\tau_{\text{CN}} = 17 \pm 5 \) ns) introduces serious uncertainty to the \(\mathrm{pK}_a^* \) value calculated with eqn (1) since it is possible that proton equilibrium is not reached in such a short-lived excited state.\(^42\) Using the Förster equation,\(^43\) one obtains \(\mathrm{pK}_a^* = 5.0 \pm 1.0 \) (Table 1).

The \(\mathrm{pK}_a \) value of the one-electron oxidized form of complex 1 is more difficult to determine. An acid–base titration is technically not feasible in our spectroelectrochemical cell, hence we rely here on the following estimation: prior investigations of related Fe(n) and Ru(n) complexes have led to the collective conclusion that one-electron oxidation of the metal center increases the acidity of the peripheral N–H groups by 3–4 \(\mathrm{pK}_a \) units relative to the parent complex in its electronic ground state.

Table 1: Ground and excited-state properties of complex 1 in deoxygenated 1:1 (v:v) \(\mathrm{CH}_3\mathrm{CN}–\mathrm{H}_2\mathrm{O} \) solution

<table>
<thead>
<tr>
<th>Protonated</th>
<th>Deprotonated</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathrm{pK}_a)</td>
<td>6.7 ± 0.2</td>
</tr>
<tr>
<td>(\mathrm{pK}_a^*)</td>
<td>5.0 ± 1.0</td>
</tr>
<tr>
<td>(r) [ns]</td>
<td>4 ± 1</td>
</tr>
<tr>
<td>(E_{\text{ox}} [\mathrm{V} \text{ vs. } \text{Fc}^+/\text{Fc}])</td>
<td>1.0 ± 0.65</td>
</tr>
<tr>
<td>(E_{\text{ox}}^* [\mathrm{V} \text{ vs. } \text{Fc}^+/\text{Fc}])</td>
<td>−0.85</td>
</tr>
<tr>
<td>(E_{\text{red}} [\mathrm{V} \text{ vs. } \text{Fc}^+/\text{Fc}])</td>
<td>−1.38/−1.68</td>
</tr>
</tbody>
</table>

Fig. 1 (a) UV-Vis absorption spectra of complex 1 (concentration: \(3 \times 10^{-5} \) M) in a 1:1 (v:v) \(\mathrm{CH}_3\mathrm{CN}–\mathrm{H}_2\mathrm{O} \) solution at ambient temperature. The solid line was obtained from a solution giving a pH meter reading of 6.7. The arrow shows the changes as the pH rises. (b) Titration curve monitoring the absorbance of complex 1 in 1:1 (v:v) \(\mathrm{CH}_3\mathrm{CN}–\mathrm{H}_2\mathrm{O} \) at 525 nm as a function of pH meter reading in this solvent mixture.

Fig. 2 (a) Luminescence of a \(1 \times 10^{-5} \) M solution of complex 1 in 1:1 (v:v) \(\mathrm{CH}_3\mathrm{CN}–\mathrm{H}_2\mathrm{O} \) after excitation at 470 nm showing the fall of the intensity as the pH rises; the solid trace was measured from a solution giving a pH meter reading of 7.0. (b) Titration curve monitoring the emission intensity of complex 1 at 670 nm at different pH meter readings in the 1:1 (v:v) \(\mathrm{CH}_3\mathrm{CN}–\mathrm{H}_2\mathrm{O} \) solvent mixture.
state.1,2,6,7,9 Thus, it appears plausible to expect a pK\textsubscript{a} value of 4 ± 1 for the one-electron oxidized form of complex 1 (Table 1).

Electrochemistry

Fig. 3a shows the cyclic voltammogram of complex 1 in dry and deoxygenated CH\textsubscript{3}CN measured in the presence of 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF\textsubscript{6}) electrolyte with a potential sweep rate of 100 mV s-1. The reversible wave at 0.0 V vs. Fc+/Fc (dashed vertical line) is due to ferrocene which was added in small quantities for internal voltage calibration. The potential sweep rate was 100 mV s-1. 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF\textsubscript{6}) was used as an electrolyte.

From the emission data in Fig. 2a one extracts a value of 1.85 eV for the energy of the 3MLCT excited state. Using the ground-state oxidation potential of 1.0 V vs. Fc+/Fc from above and the standard approximations,31 one obtains an electrochemical potential of −0.85 V vs. Fc+/Fc as an approximative value for oxidation of complex 1 in its emissive excited state. Thus, complex 1 is a significantly less potent photoredoxant than Ru(2,2′-bipyridine)\textsubscript{2}Cl\textsubscript{2}.32,33 Nevertheless, given an electrochemical potential of −0.53 V vs. Fc+/Fc for benzoquinone in water,31,37 one estimates a reaction free energy for electron transfer (ΔG\textsubscript{ET}) between photoexcited complex 1 and benzoquinone of −0.32 eV. Even though this estimate is accurate to ±0.1 eV at best, it appears safe to state that oxidative excited-state quenching by benzoquinone is thermodynamically possible.

Luminescence quenching by benzoquinone

The solid trace in Fig. 4a is the emission spectrum obtained after exciting a de-oxygenated 10−5 M CH\textsubscript{3}CN-H\textsubscript{2}O (1 : 1) solution of complex 1 at 470 nm. The pH value of this solution was adjusted to 4 using aqueous HCl in order to ensure protonation of the complex (see Fig. 2b). The solid trace in Fig. 4b is the decay of the luminescence emitted at 670 nm by the same solution after excitation at 532 nm with laser pulses of ~8 ns width. When adding increasing amounts of 1,4-benzoquinone to this solution, one obtains the luminescence spectra

![Fig. 4](image-url)

Fig. 4 (a) Luminescence spectra of a ∼10−5 M solution of complex 1 in 1 : 1 (v : v) CH\textsubscript{3}CN-H\textsubscript{2}O acidified with aqueous HCl to a pH meter reading of 4; excitation occurred at 470 nm; solid trace: solution containing complex 1 only; dashed traces: solutions containing 2 mM, 4 mM, 6 mM, 8 mM, 12 mM, 16 mM benzoquinone; the data are normalized arbitrarily to a value of 1.0 for the highest intensity. (b) Decays of the luminescence intensities at 670 nm of the solutions from (a) after excitation at 532 nm with laser pulses of ~8 ns width. (c) Stern–Volmer plot based on the luminescence intensity data from (a); the dashed line is the result of a linear regression fit (forced to an ordinate of 0) yielding the K\textsubscript{SV} value of 852 ± 21 M−1 in Table 2. (d) Stern–Volmer plot based on the luminescence lifetime data from (b); the dashed line is the result of a linear regression fit (forced to an ordinate of 0) yielding the K\textsubscript{SV} value of 788 ± 2 M−1 in Table 2.
represented by the dashed lines in Fig. 4a and the luminescence decays shown as dashed traces in Fig. 4b. Without benzoquinone the luminescence lifetime (τ) is 160 ns, while in the presence of 16 mM benzoquinone τ has dropped to ~15 ns (Fig. 4b). The luminescence intensity decreases simultaneously by a factor of ~15 (Fig. 4a).

The emission quenching by benzoquinone is analyzed quantitatively by the Stern–Volmer plots in Fig. 4c and d. Both sets of data, the luminescence intensity data in Fig. 4c and the luminescence lifetime data in Fig. 4d, yield nearly identical results from which we conclude that the emission quenching is dynamic. From linear regression fits to the experimental data we obtain Stern–Volmer constants of $K_{SV} = 852 \pm 21 \text{M}^{-1}$ (from intensities) and $K_{SV} = 788 \pm 2 \text{M}^{-1}$ (from lifetimes) (Table 2). Given the $^3\text{MLCT}$ lifetime of 160 ± 16 ns for complex 1, we calculate rate constants for bimolecular excited-state quenching of $k_Q = (5.4 \pm 0.6) \times 10^{9} \text{M}^{-1} \text{s}^{-1}$ (from intensities; $k_Q = K_{SV}/\tau$) and $k_Q = (5.0 \pm 0.5) \times 10^{9} \text{M}^{-1} \text{s}^{-1}$ (from lifetimes) (Table 2). These values are near the diffusion-controlled limit and are close to that reported for $^3\text{MLCT}$ excited-state quenching of Ru(2,2′-bipyridine)$_2^{2+}$ by benzoquinone (6.32 × 109 M$^{-1}$ s$^{-1}$ in DMF)38.

A strictly analogous series of experiments was performed using the same solvent mixture with heavy water (and DCl in D$_2$O to acidify). Under these experimental conditions the peripheral N-atom of the pyridylimidazoline ligand of complex 1 (present at 10$^{-5}$ M concentration) is deuterated and τ = 242 ns in the absence of benzoquinone (Table 1). The respective experimental data and Stern–Volmer plots analogous to those in Fig. 4 are given in the ESI (Fig. S2†), the Stern–Volmer constants (K_{SV} values) and the rate constants for bimolecular excited-state quenching (k_Q values) from these experiments are reported in Table 2. We note that there is no significant H/D kinetic isotope effect (KIE); the ratio between k_Q values in CH$_3$CN–H$_2$O and k_Q values in CH$_3$CN–D$_2$O (= KIE values in Table 2) is 1.2 ± 0.3 (from intensities) and 1.1 ± 0.3 (from lifetimes). This finding will be important for the discussion of reaction mechanisms below.

Transient absorption spectroscopy

The solid line in Fig. 5a is the transient absorption spectrum detected from a 1 : 1 CH$_3$CN–D$_2$O solution of complex 1 after excitation at 532 nm; the excitation pulse width was ~8 ns and the spectrum is time-averaged over a period of 200 ns starting immediately after the laser pulse. One observes the typical features of $^3\text{MLCT}$-excited ruthenium(II) α-diimine complexes,39 namely an MLCT bleach between 420 nm and 535 nm, as well as an absorption peaking at 378 nm caused by the reduced α-diimine ligands. As a consequence of $^3\text{MLCT}$ excited-state quenching, the intensity of these two signals decreases rapidly with increasing benzoquinone concentration (dashed traces in Fig. 5a). When monitoring the temporal evolution of the bleach at 490 nm and the absorbance at 380 nm in the presence of different benzoquinone concentrations one obtains the transients shown in Fig. 6a and b. Within experimental accuracy, the bleach recoveries at 490 nm (Fig. 6a) and the transient absorption decays at 380 nm (Fig. 6b) occur with time constants which are identical to the luminescence lifetime values extracted from Fig. 4b. This observation confirms that

![Image](323x371 to 535x580)

Table 2 Stern–Volmer constants (K_{SV}), rate constants for bimolecular excited-state quenching (k_Q), and H/D kinetic isotope effects (KIE) for the complex 1/benzoquinone reaction couple as determined from the experimental data in Fig. 4 and S2† and Table 1

<table>
<thead>
<tr>
<th></th>
<th>Hydrogenated</th>
<th>Deuterated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intensity</td>
<td>Lifetime</td>
</tr>
<tr>
<td>K_{SV}</td>
<td>852 ± 21</td>
<td>788 ± 2</td>
</tr>
<tr>
<td>k_Q</td>
<td>$[5.4 \pm 0.6] \times 10^9$</td>
<td>$[5.0 \pm 0.5] \times 10^9$</td>
</tr>
<tr>
<td>KIE</td>
<td>1.2 ± 0.3</td>
<td>1.1 ± 0.3</td>
</tr>
</tbody>
</table>

† The $^3\text{MLCT}$ lifetime of complex 1 is 160 ns (Table 1) in the undeuterated form and 242 ns in the deuterated form. These lifetimes are accurate to ±10%, and this determines to a large extent the error bars associated with the k_Q and KIE values.
one is principally monitoring 3MLCT-excited complex 1 in Fig. 5a.

Turning our attention back to the transient absorption spectra in Fig. 5a we note that at a benzoquinone concentration of 16 mM a weak positive signal near 410 nm is discernible, in addition to a nearly equally weak MLCT bleach at longer wavelengths. The same two spectral features can be detected 10 μs later (Fig. 5b); i.e., in an experiment in which complex 1 is photoexcited at $t = 0$ but detection of the photoproducts only starts at $t = 10$ μs. The absorption band at 410 nm is reminiscent of the spectrum of a neutral semiquinone radical, i.e., one-electron reduced and singly protonated benzoquinone, while the remaining bleach is in line with the oxidized ruthenium complex. Whether or not the complex is oxidized and deprotonated (or only oxidized) is unclear from the spectrum in Fig. 5b, mostly because of the weakness of the signal that we interpret as the MLCT bleach of a Ru(III) species. At any rate, the data in Fig. 5 seem compatible with excited-state deactivation of complex 1 by benzoquinone through proton-coupled electron transfer (PCET), because there is spectral evidence for the semiquinone radical. However, the extinction coefficient of the bleach at 490 nm for the 3MLCT-excited form of the complex and for its one-electron oxidized form is expected to be of similar magnitude. The relative weakness of the remaining MLCT bleach in the presence of 16 mM benzoquinone (Fig. 5a and b) therefore suggests that the majority of the photochemistry occurs through a different reaction pathway. One obvious possibility is simple photoinduced electron transfer (without proton transfer) which is then followed by rapid thermal back reaction precluding the observation of an intense MLCT bleach.

Summary and conclusions

Even though photoexcited complex 1 has nearly 0.39 V less reducing power than photoexcited Ru(2,2′-bipyridine)$_3$)$_2$, the principal photochemical reaction pathway for 3MLCT-excited complex 1 seems to be simple electron transfer rather than PCET. We had specifically chosen complex 1 with its 4,4′-bis-(trifluoromethyl)-2,2′-bipyridine ligand with the aim to increase the probability for observing PCET by making simple electron transfer thermodynamically more difficult; the above-mentioned electron-withdrawing chelate ensures a relatively high oxidation potential. Despite this strategy, we principally observe simple ET as evidenced by the absence of a significant H/D kinetic isotope effect in excited-state deactivation and by our results from transient absorption spectroscopy. However, the latter technique also provides evidence for the photo-production of the semiquinone radical as a minor side product.

It appears plausible that the most important reason for observing chiefly simple photoinduced electron transfer in lieu of PCET is the fact that the former process is already exergonic by approximately 0.3 eV while proton-coupling only adds another ~0.2 eV of driving force. The semiquinone radical has a pK$_a$ value of 4.1 in an aqueous solution, while the pK$_a$ of the oxidized complex is also around 4 ± 1. Consequently, coupling proton transfer to the photoinduced electron transfer reaction does not provide significant additional driving-force to an overall PCET reaction. This problem could potentially be overcome by using more electron-rich benzoquinones, but so far our efforts in this direction have been plagued by solubility issues and by difficulties to observe meaningful transient absorption spectra.

On a final note we point out that complex 1 and benzoquinone need not necessarily be oriented in the hydrogen-bonded fashion depicted in Scheme 1b. Other non-hydrogen bonded encounter complexes are conceivable as well, especially in protic solvent. Experiments in CH$_3$Cl$_2$ have been performed in an attempt to address this issue, but the results have been inconclusive as far as the possibility of static excited-state quenching in pre-formed hydrogen-bonded ruthenium(II)-benzoquinone adducts is concerned.

An important issue in our experiments is that CH$_3$CN solutions at pH 4 must be used in order to ensure that the pyridylimidazole ligand of complex 1 is protonated. However, at an H$_3$O$^+$ concentration of 10$^{-4}$ M protonation of
benzoquinone may occur directly from hydronium ions instead of from complex I (Scheme 2). Direct protonation of the benzoquinone unit by H₂O (pKₐ = 15.7) appears unlikely for thermodynamic reasons.⁴³⁻⁴⁵

Much is yet to be learned about multi-site PCET reactions which involve photoexcited molecules, i.e., in terms of understanding PCET at a fundamental level the proposed mechanism in Scheme 2 is no less interesting and no less important than that from Scheme 1b.⁴⁶,⁴⁷

Acknowledgements

Funding from the Deutsche Forschungsgemeinschaft (DFG) through IRTG-1422 and through grant number INST186/872-1 is gratefully acknowledged. The MWK Niedersachsen is acknowledged for co-funding the transient absorption spectrometer.

References

