Exact algebraization of the signal equation of spoiled gradient echo MRI


Dathe, Henning; Helms, Gunther (2010): Exact algebraization of the signal equation of spoiled gradient echo MRI - Physics in Medicine and Biology; Vol. 55, No. 15, p. 4231-4245.

Verlinken Sie auf bzw. zitieren Sie dieses Dokument mit der folgenden permanenten URL:

Dateien zu dieser Ressource

Dateien Größe Format Beschreibung Version
closed accessDathe_PhysMedBiol.pdf 845.4Kb PDF Keine Beschreibung publishedVersion
Web of Science® Times Cited:10

Verlagspublikation: 10.1088/0031-9155/55/15/003

Autor: Dathe, Henning; Helms, Gunther
Zusammenfassung: The Ernst equation for Fourier transform nuclear magnetic resonance (MR) describes the spoiled steady-state signal created by periodic partial excitation. In MR imaging (MRI), it is commonly applied to spoiled gradient-echo acquisition in the steady state, created by a small flip angle α at a repetition time TR much shorter than the longitudinal relaxation time T1. We describe two parameter transformations of α and TR/T1, which render the Ernst equation as a low-order rational function. Computer algebra can be readily applied for analytically solving protocol optimization, as shown for the dual flip angle experiment. These transformations are based on the half-angle tangent substitution and its hyperbolic analogue. They are monotonic and approach identity for small α and small TR/T1 with a third-order error. Thus, the exact algebraization can be readily applied to fast gradient echo MRI to yield a rational approximation in α and TR/T1. This reveals a fundamental relationship between the square of the flip angle and TR/T1 which characterizes the Ernst angle, constant degree of T1-weighting and the influence of the local radiofrequency field.
Datum: 2010

Die folgenden Lizenzbestimmungen sind mit dieser Ressource verbunden:

Share on:

Das Dokument erscheint in:

Zur Langanzeige


Erweiterte Suche


Mein GoeScholar

Infos & Hilfe

Login: ?

GWDG-Benutzername ist der Namensteil uname von ihrer E-Mail-Adresse oder

Das Passwort ist Ihr Passwort bei der GWDG.