Ginkgo

Beyond mean regression

GoeScholar

Kneib, Thomas (2013): Beyond mean regression - Statistical Modelling; Vol. 13, No. 4, p. 275-303. , SAGE Publications

Verlinken Sie auf bzw. zitieren Sie dieses Dokument mit der folgenden permanenten URL:
bookmark http://resolver.sub.uni-goettingen.de/purl?gs-1/10831

Dateien zu dieser Ressource

Dateien Größe Format Beschreibung Version
documentBeyond mean regression.pdf 956.6Kb PDF Artikel publishedVersion
 
 
Web of Science® Times Cited:4

Verlagspublikation: 10.1177/1471082X13494159

 
Autor: Kneib, Thomas
Zusammenfassung: Usual exponential family regression models focus on only one designated quantity of the response distribution, namely the mean. While this entails easy interpretation of the estimated regression effects, it may often lead to incomplete analyses when more complex relationships are indeed present and also bears the risk of false conclusions about the significance/importance of covariates. We will therefore give an overview on extended types of regression models that allows us to go beyond mean regression. More specifically, we will consider generalized additive models for location, scale and shape as well as semiparametric quantile and expectile regression. We will review the basic properties of all three approaches and compare them with respect to the flexibility in terms of the supported types of predictor specification, the availability of software and the support for different types of inferential procedures. The considered model classes are illustrated using a data set on rents for flats in the City of Munich.
URI: http://resolver.sub.uni-goettingen.de/purl?gs-1/10831
Datum: 2013
Verlag: SAGE Publications
Bemerkung: This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.

Die folgenden Lizenzbestimmungen sind mit dieser Ressource verbunden:

Share on:

Das Dokument erscheint in:

Zur Langanzeige

Suche

Erweiterte Suche

Browsen

Mein GoeScholar

Infos & Hilfe


Login: ?

GWDG-Benutzername ist der Namensteil uname von ihrer E-Mail-Adresse uname@gwdg.de oder uname@med.uni-goettingen.de

Das Passwort ist Ihr Passwort bei der GWDG.